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THE STEIN EFFECT FOR FRÉCHET MEANS
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The Fréchet mean is a useful description of location for a probability
distribution on a metric space that is not necessarily a vector space. This
article considers simultaneous estimation of multiple Fréchet means from a
decision-theoretic perspective, and in particular, the extent to which the un-
biased estimator of a Fréchet mean can be dominated by a generalization of
the James–Stein shrinkage estimator. It is shown that if the metric space sat-
isfies a nonpositive curvature condition, then this generalized James–Stein
estimator asymptotically dominates the unbiased estimator as the dimension
of the space grows. These results hold for a large class of distributions on
a variety of spaces, including Hilbert spaces and, therefore, partially extend
known results on the applicability of the James–Stein estimator to nonnormal
distributions on Euclidean spaces. Simulation studies on phylogenetic trees
and symmetric positive definite matrices are presented, numerically demon-
strating the efficacy of this generalized James–Stein estimator.

1. Introduction. In his seminal 1948 article, Fréchet generalized the notion of the mean
of a real-valued random variable to a metric space-valued random object [30]. Like the usual
mean, the Fréchet mean provides a summary of the location of a distribution, from which a
notion of Fréchet variance may also be defined. Fréchet means and variances have been used
for statistical analysis of data from nonstandard sample spaces, such as spaces of phyloge-
netic trees, symmetric positive definite matrices in diffusion tensor imaging and functional
data analysis on Wasserstein spaces, to name a few [11, 55, 57, 58]. In terms of methodolog-
ical development, [21, 59] use Fréchet means to develop extensions of linear regression and
ANOVA that are applicable for metric space-valued data. Additionally, substantial effort has
gone into studying the convergence properties of sample Fréchet means and variances [10,
32, 75].

This article primarily considers the simultaneous estimation of multiple Fréchet means,
and conditions under which a generalized James–Stein shrinkage estimator dominates the
natural estimator, the unbiased estimator of the Frechét mean. As shown in [39, 64], if
X ∼ Nn(θ, σ 2I ) with σ 2 known and n ≥ 3, X is dominated by the James–Stein shrinkage
estimator δJS(X), given by

δJS(X) =
(

σ 2(n − 2)

‖X − ψ‖2

)
ψ +

(
1 − σ 2(n − 2)

‖X − ψ‖2

)
X,(1)

where ψ is a known shrinkage point. Intuitively, this estimator is obtained by starting from X

and “shrinking” toward ψ by an amount that is adaptively estimated from the data X. Under
the average squared-error loss function L(θ, δ) = 1

n
‖θ − δ‖2, the risk of the James–Stein

estimator is

R(θ, δJS) = σ 2 − σ 4
(

1 − 2

n

)
E

(
n − 2

‖X − ψ‖2

)
,(2)
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while the risk of the unbiased estimator X is σ 2 [29]. For large n, the relative improvement
of the Stein estimator over X approximately depends on the ratio σ 2/(σ 2 + ‖θ − ψ‖2). If
the shrinkage point is aptly chosen so that ‖θ − ψ‖2 is small relative to variance of the
components of X, the James–Stein estimator will significantly outperform X. The fact that
δJS dominates X is often interpreted as an indication of how sharing information across
seemingly unrelated populations can lead to an improved estimator of θ1, . . . , θn with respect
to squared error loss summed across all populations. Indeed, the James–Stein estimator may
be derived as an empirical Bayes estimator in which ‖X−ψ‖2 provides information about the
likely magnitude of ‖θ − ψ‖2 [25]. Multivariate generalizations of δJS have been developed
in the setting where Xi and θi are vectors with Xi ∼ Np(θi,�) [24, 48, 65, 71]. When � =
σ 2I these multivariate generalizations can improve over (1) if it is assumed that the θi have
some shared structure, such as θi ∼ Np(0,A).

In this article, we study a generalization of the Stein estimation problem where we are
interested in estimating the Fréchet means θ1, . . . , θn of n different populations given a single
metric space valued observation Xi from each population. The estimator (1) can be extended
to sample spaces that are uniquely geodesic metric spaces, which are metric spaces where
there is a unique path of minimum length, or geodesic, between any two points. The estimator
of θ1, . . . , θn that we consider is obtained by traveling from X = (X1, . . . ,Xn) to a shrinkage
point ψ along a geodesic by an amount that is adaptively estimated from X. If the geodesics
in the metric space have tractable, known forms, then this estimator is simple to compute in
practice.

We develop theoretical results in two different settings that demonstrate that under some
mild conditions, the proposed geodesic James–Stein estimator dominates the unbiased es-
timator asymptotically as the number of populations n increases. The first setting in Sec-
tion 4 corresponds to the classical James–Stein estimation problem, where the Fréchet means
θ1, . . . , θn are fixed. The second setting in Section 5 assumes that the θi’s are i.i.d. and eval-
uates the marginal (Bayes) risk of the geodesic James–Stein estimator. In the latter setting, it
is reasonable to shrink the observations toward their sample Fréchet mean. Of note is that the
domination results obtained are nonparametric; only moment bounds are placed on the family
of distributions under consideration. As a consequence, the geodesic James–Stein estimator
is robust, having reasonable performance across a wide range of distributions.

As explained by Beran [7] and detailed in Stein’s groundbreaking paper [64], the construc-
tion of Stein’s estimator was motivated in part by the observation that for a large n, by the
law of large number the triangle with vertices n−1/2ψ , n−1/2X and n−1/2θ is approximately a
right triangle with hypotenuse given by the edge between n−1/2X and n−1/2ψ . After rescal-
ing this triangle, Stein’s estimator seeks to estimate the point found by projecting n−1/2θ

onto the line spanned by the hypotenuse. By using the knowledge that the given triangle is
approximately a right triangle, it is possible to find this projected point since the side lengths
‖n−1/2X − n−1/2ψ‖2 and ‖n−1/2X − n−1/2θ‖2 ≈ σ 2 are known. These asymptotic consid-
erations, which do not rely on the assumption of normality, motivate many of the results to
follow.

In particular, the possibility of a Stein effect in a metric space, that is, domination of X by
a shrinkage estimator, will partly depend on the geometry of metric space generalizations of
triangles, or equivalently the curvature of the metric space. Roughly, the Stein effect is absent
in spaces with positive curvature, and generally present in flat spaces or spaces with negative
curvature. These latter two spaces are known as Hadamard spaces [67], and encompass a
wide variety of metric spaces such as the aforementioned spaces of trees, symmetric positive-
definite matrices and Wasserstein space on R. We emphasize here that since any Hilbert space
is a Hadamard space, all of the results we develop apply in the setting where the sample space
is Rn. Moreover, any closed, convex subset of a Hilbert space, for which the Wasserstein
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space on R is an example, is also a Hadamard space. These results are of interest in this
setting as they hold under mild, nonparametric assumptions.

Recent related work [73, 74] examines shrinkage estimators for generalizations of the
Gaussian distribution on Lie groups and the manifold of symmetric positive definite matri-
ces. Previous work generalizing the Stein estimator in Euclidean space has involved extend-
ing domination results to nonnormal distributions or to larger classes of loss functions [15,
42]. Typically, such distributions are assumed to have some sort of spherical symmetry or ex-
ponential family structure [13, 37]. A related focus of research on Stein estimators has been
finding estimators that dominate the positive part James–Stein estimator [6], which is known
to be inadmissible [16, 63]. For a comprehensive account of shrinkage estimation, see [29].

An outline of the remainder of this article is as follows: In Section 2, the concepts of
Fréchet means, variances and Hadamard spaces are reviewed. Section 3 applies these con-
cepts to the problem of estimating a Fréchet mean, and considers conditional Fréchet means
and randomized and unbiased estimators. Section 4 provides the core theoretical results of the
article, where the geodesic James–Stein estimator is introduced and its risk function for the
multigroup estimation problem is investigated. A natural extension of this problem is to place
a prior distribution on the Fréchet means of each group. This is done in Section 5 where we
introduce the possibility of adaptively estimating a shrinkage point. Asymptotic optimality
properties of the geodesic James–Stein estimator and the relationship to empirical Bayes esti-
mators are also discussed in this section. In Section 6, motivated by the problem of estimating
gene trees in phylogenetics, we demonstrate numerically how the geodesic James–Stein es-
timator exhibits favorable performance relative to X in a simulation study on the space of
trees. The geodesic James–Stein estimator is then applied in the space of symmetric positive
definite matrices as a method of smoothing diffusion tensor MRI data. Proofs of all the results
in this article are provided in the Supplementary Material [52].

2. Preliminaries.

2.1. Metric space valued random objects. Let (X , d) be a metric measure space
equipped with the Borel σ -algebra B, induced from the metric topology on X . A metric
space valued random object X is a B-measurable function from a probability space (Y,G,Q)

into X . The probability distribution P of X on (X ,B) is defined as the standard pushforward
measure, P(A) := Q(X ∈ B) = Q(X−1(B)), ∀B ∈ B. The existence of the underlying prob-
ability space (Y,G,Q) is implicitly assumed throughout this article.

Statistical inference for a distribution P is often focused on the estimation of a location of
the distribution, and measures of variability about this location. In Euclidean space, the mean
of a random variable provides one of the most basic notions of average location or central
tendency. In R

n, the integral
∫

X dP that defines the mean of X depends heavily on the vector
space structure of Rn. Fréchet [30] proposed a generalization of the Euclidean mean, referred
to as the Fréchet mean or the alternatively the barycenter, that applies to arbitrary metric
spaces. The idea is that a mean of a random object X should be the collection of points in X
that are on average the closest to X.

DEFINITION 2.1. The Fréchet mean of X, denoted by E2X, is the solution set to the
following variational problem:

E2X := argmin
x∈X

E
(
d(x,X)2)

.(3)

When X = R
n with the Euclidean metric, E2X coincides with the usual Euclidean mean.

The above definition can be further generalized by changing the exponent of the distance
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function in (3). In R
n, if d(x,X) is instead raised to the first power in (3), the resulting

generalized Fréchet mean is the set of componentwise L1 medians of X. Unlike the Euclidean
case, the existence and uniqueness of the solutions to (3) is not guaranteed, so that E2X is
set-valued in general and can even be the empty set. A simple example of the nonexistence
of a Fréchet mean is when X ∼ N(0,1) on the space R− {0}.

If E2X is to be meaningful, we require that E(d(x,X)2) < ∞ for at least one x ∈ X .
By the triangle inequality, d(x,X) ≤ d(x, x0) + d(x0,X), which implies that E(d(x,X)2) <

∞ for all x ∈ X . We say that X ∈ L2(X ) if E(d(x,X)2) < ∞ for all x ∈ X . It should be
remarked that this is slightly different than the situation in Euclidean space since a Euclidean
mean E(X) exists and is finite as long as E(|X|) < ∞ or equivalently E(|X − x|) < ∞,
∀x ∈ R

n. There is a more general definition of a Fréchet mean that accounts for this minor
discrepancy, although we do not have any need for this extra generality [67].

Having defined a mean, it is useful to have a measure describing the spread of X about this
mean. The Fréchet variance captures the average squared distance of X from its correspond-
ing Fréchet mean.

DEFINITION 2.2. The Fréchet variance of X ∈ L2(X ), denoted by V2X, is the number

V2X := inf
x∈X E

(
d(x,X)2)

.(4)

If X ∈ R
n with covariance matrix �, then the 2-Fréchet variance of X is the total variance

tr(�), which is the sum of the variances of each component of X. As seen from this example,
Fréchet variances do not capture any information about how the spread of X varies in differ-
ent “directions” in the metric space. Fréchet variances only summarize the average squared
distance of a random object from its Fréchet mean set.

Throughout the remainder of this article if X is distributed according to P , then the nota-
tion E2P := E2X and V2P := V2X will be used.

2.2. Hadamard spaces. A geodesic curve in a metric space (X , d) is a generalization of
a straight line segment in R

n.

DEFINITION 2.3. The curve γ : [a, b] → X , where −∞ < a < b < ∞, is a speed v

geodesic if d(γ (t1), γ (t0)) = v|t1 − t0| for all a ≤ t1, t0 ≤ b.

This definition requires that the points on the curve γ look exactly the same as the points
on a corresponding interval in R with respect to the metric. Thus, the map f : [va, vb] →
γ ([a, b]) defined by f (s) = γ (s/v) is an isometry. The length of a curve σ : [a, b] → X is
defined by �(σ ) = supa=x0≤···≤xk=b

∑k
i=1 d(σ (xi), σ (xi−1)) where the supremum is over any

finite partition (x0, . . . , xk) of the interval [a, b]. A geodesic connecting any two points is a
minimizer of the length functional out of all curves between these points.

A metric space (X , d) is defined to be a geodesic space if for all x1, x0 ∈ X there exists a
geodesic γ : [a, b] → X with endpoints, γ (a) = x0, γ (b) = x1 [3, 17]. The metric space X
is uniquely geodesic if it is geodesic and any two geodesics γ,σ : [a, b] → X , with γ (a) =
σ(a), γ (b) = σ(b) are equal [14]. In a uniquely geodesic space where γ : [0,1] → X is
a geodesic with γ (0) = x and γ (1) = y, the notation [x, y]t for t ∈ [0,1] will be used to
represent the point γ (t). The interpretation of [x, y]t is that this is the point obtained by
travelling along the geodesic that connects x to y, whose distance from x is a proportion t of
the total length of the geodesic. Similarly, the expression [x, y] represents the image in X of
the geodesic between x and y.

In a normed vector space (V ,‖ · ‖), line segments are geodesic in the sense defined above.
To see this, if γ : [a, b] → V is the line segment γ (t) = v1t + v0, then ‖γ (t1) − γ (t0)‖ =
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FIG. 1. Metric space comparison triangles, 	xyz and 	x̃ỹz̃ in a space with negative Alexandrov curvature
(left) and positive Alexandrov curvature (right).

‖v1‖|t1 − t0|, implying that γ is a speed ‖v1‖ geodesic. Any normed vector space is thus
geodesic but may not be uniquely geodesic. In the case where V is an inner product space,
V is uniquely geodesic. On a sphere, geodesics are the minor arcs of great circles, which are
the shortest paths that connect points on a sphere. The sphere is geodesic but not uniquely
geodesic because any two antipodal points can be joined by infinitely many geodesics. It is
worth noting that in a Riemannian manifold geodesics are more commonly defined as curves
that are local minimizers of the Riemannian length functional. The definition of a geodesic
presented here requires that a geodesic be a global minimizer of the length functional and so
it is more restrictive than the usual definition if X is a Riemannian manifold.

The curvature of a uniquely geodesic metric space is primarily described in terms of the
geometric properties of generalized triangles in the space. Given three points x, y, z ∈ X the
triangle 	xyz ⊂ X is defined as the set of points [x, y] ∪ [y, z] ∪ [z, x]. Due to the triangle
inequality, given the numbers d(x, y), d(y, z), d(z, x), there exist points x̃, ỹ, z̃ in R

2 such
that the triangle 	x̃ỹz̃ ⊂ R

2 has side lengths d(x, y), d(y, z) and d(z, x). The Alexandrov
curvature [2] of a metric space compares how the distance from [x, y]t to z in X differs
from the distance from (1 − t)x̃ + t ỹ to z̃ in R

2 for t ∈ [0,1]. A metric space has nega-
tive Alexandrov curvature if d([x, y]t , z) is no greater than d([x̃, ỹ]t , z̃) for all x, y, z ∈ X
while being less than d([x̃, ỹ]t , z̃) for at least some triplet of points x, y, z ∈ X [14]. Positive
Alexandrov curvature is defined similarly, while a space with zero Alexandrov curvature has
d([x, y]t , z) = d([x̃, ỹ]t , z̃) for all x, y, z ∈ X . These requirements can be visualized as pos-
itively curved spaces having triangles with edges that bend outwards and negatively curved
spaces having triangles with edges that bend inwards, relative to triangles in R

2. See Figure 1
for typical examples of generalized triangles in positively and negatively curved spaces. The
generalized triangles in Figure 1 are isometrically embedded in R

2 so that all distances be-
tween points are given by Euclidean distance.

For all x, y, z ∈ X a metric space with nonpositive curvature satisfies the CAT(0) curvature
bound d([x, y]t , z) ≤ d([x̃, ỹ]t , z̃). After expanding d([x̃, ỹ]t , z̃) in terms of the side lengths
of the triangle 	x̃ỹz̃, the CAT(0) bound is equivalent to

d
([x, y]t , z)2 ≤ (1 − t)d(x, z)2 + td(y, z)2 − t (1 − t)d(x, y)2(5)

for all x, y, z ∈X and t ∈ [0,1].
DEFINITION 2.4. A Hadamard space is a complete, uniquely geodesic metric space that

satisfies the CAT(0) curvature bound in (5).

The subset of Hadamard spaces that have zero Alexandrov curvature so that (5) holds with
equality are geometrically similar to R

n. In this case, the triangle 	xyz is indistinguishable



3652 A. MCCORMACK AND P. HOFF

from its comparison triangle 	x̃ỹz̃, and thus Euclidean trigonometry will apply to 	xyz. For
example, a version of the Euclidean law of sines or cosines will hold in such a space, and suit-
ably defined interior angles of 	xyz will also sum to π . Any Hilbert space or closed, convex
subset thereof is a Hadamard space with vanishing Alexandrov curvature. Consequently, any
results that hold for Hadamard spaces will also hold for Hilbert spaces, which is the setting
of much of classical statistics.

The definition of Alexandrov curvature is motivated in part as a generalization of the sec-
tional curvature of a Riemannian manifold. As such, any complete Riemannian manifold
with nonpositive sectional curvature is a Hadamard space. For example, the saddle surface
in R3 has negative sectional curvature and is a Hadamard space with negative Alexandrov
curvature. If one draws a triangle of shortest paths on such a surface, it will look like the
comparison triangle in Figure 1. Another easily visualized example of a Hadamard space
with nonzero curvature is a metric tree. Metric trees are weighted graphs that are trees en-
dowed with the shortest path metric. Additional details on metric trees can be found in the
Supplementary Material [53].

In a Hilbert space, any closed and convex set C has the property that there exists a unique
projection of any point x onto C that minimizes the squared distance of x from C. If C is a
closed linear subspace, this follows from the Pythagorean theorem. This result can be gener-
alized to Hadamard spaces as follows: A set C in a geodesic space is said to be convex if for
all x, y ∈ C we have that [x, y] ⊂ C. The Hadamard space projection theorem of [5] says that
for any point x ∈ X and closed, convex subset C of a Hadamard space there exists a unique
point �(x) ∈ C that satisfies d(x,�(x))2 = infy∈C d(x, y)2. In addition, �(x) satisfies the
inequality

d(x, z)2 ≥ d
(
z,�(x)

)2 + d
(
�(x), x

)2 ∀z ∈ C.(6)

The inequality in (6) provides a bound on how close �(x) is to x relative to any other point
z ∈ C. When C is a closed vector subspace of a Hilbert space, (6) holds with equality and is
the Pythagorean theorem.

Analogous to the construction of L2(Rn), the set L2(X ) of almost everywhere equal ran-
dom objects on X is a Hadamard space under the metric

ρ(X,Y ) := E
(
d(X,Y )2)1/2

.

Geodesics are given pointwise by [X,Y ]t (ω) = [X(ω),Y (ω)]t . The CAT(0) bound follows
by the linearity of expectations while completeness follows in the same way that complete-
ness of L2(Rn) follows from the completeness of Rn [5].

3. Estimation of Fréchet means in Hadamard spaces. A general Hadamard space
point estimation problem can be formulated as follows: Let P ⊂ L2(X ) be a family of dis-
tributions on the Hadamard space (X , d) and g : P → X be a functional defined on P that is
an estimand of interest. For example, g could be the Fréchet mean functional g(P ) = E2P .
Given a single observation of X ∼ P ∈ P , we seek to estimate g(P ) under the squared dis-
tance loss

L
(
P, δ(X)

) := d
(
g(P ), δ(X)

)2
,

where the corresponding risk function is R(P, δ) := E(L(P, δ)) and δ : X → X is a generic
estimator.

When (X , d) is a Hadamard space, it is possible to obtain a bias-variance type of inequality
for this risk function by using (6). First, note that the collection of constant almost everywhere
random objects C := {θ ∈ X } ⊂ L2(X ) is a closed and convex set in the Hadamard space
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L2(X ). By definition, E2(δ(X)) = argminθ∈C ρ(δ, θ)2 and the projection theorem implies
that the Fréchet mean E2(δ(X)) = �(δ) exists and is unique [67]. Therefore, the nonunique-
ness of Fréchet means is not a concern when working in Hadamard spaces. The inequality in
(6) becomes

E
(
d
(
g(P ), δ

)2) ≥ d
(
g(P ),E2δ

)2 + E
(
d(E2δ, δ)

2) ∀g(P ) ∈ X ,(7)

which can be viewed as a bias-variance inequality. If δ(X) is used as an estimator for g(P )

under the loss function L(P, ·) = d(g(P ), ·)2 then the term E(d(E2δ, δ)
2) is exactly the

Fréchet variance V2δ, while d(g(P ),E2δ)
2 can be regarded as the squared bias of δ. As

E(d(δ,E2δ)
2) ≤ E(d(δ, θ)2) for all θ ∈ X , δ is risk unbiased for E2δ under the squared

distance loss [46].
Conditional expectations of random objects in a Hadamard space can be defined in a simi-

lar manner to Fréchet means. Recall that for a σ -algebra G ⊂ B the conditional expectation of
X ∈ L2(Rn) is the projection of X onto the closed vector subspace of G-measurable random
variables in L2(Rn). Likewise, taking C := {Y ∈ L2(X ) : σ(Y ) ⊂ G} to be the G-measurable
random objects in L2(X ), the conditional expectation E2(X|G), as defined in [5], is given by

E2(X|G) := argmin
Y∈C

E
(
d(X,Y )2)

.(8)

As the set C is closed and convex, E2(X|G) exists, is unique, and satisfies a version of (6).
However, the lack of a vector space structure in C implies that not all of the familiar properties
of Euclidean conditional expectations carry over to Hadamard spaces.

The CAT(0) inequality (5) can be interpreted as a statement about the convexity of the
loss function d(g(P ), ·)2. A function f : X → R on a uniquely geodesic space is said to be
metrically convex if f ([x, y]t ) is convex as a function of t ∈ [0,1] for any choice of x, y ∈ X
[5]. By (5), the function fz(x) = d(z, x)2 is metrically convex for all z ∈ X . This convexity
yields behavior similar to that of convex functions defined on R

n. For instance, a Fréchet
mean version of Jensen’s inequality, E(d(x, δ)2) ≥ d(x,E2δ)

2 for all x ∈ X , is an immediate
consequence of (7). The metric convexity of the squared distance function is also the key
property that allows for the favorable use of the shrinkage estimators considered in the next
section.

In Rn the collection of nonrandomized estimators forms an essentially complete class for
decision problems with convex loss functions. The analogous result in Hadamard spaces is
the following.

LEMMA 3.1. Let δ(X,U) ∈ X be a randomized estimator where U ∼ Unif[0,1] is in-
dependent of X ∼ P and R(P, δ) < ∞. If L(P, ·) : X → [0,∞) is a metrically convex and
lower semicontinuous function for each fixed P ∈ P then there exists a nonrandomized esti-
mator δ̃(X) with R(P, δ̃) ≤ R(P, δ) for all P ∈ P .

PROOF. Fix P and take δ̃(X) = E2(δ(X,U)|σ(X)) as defined by (8). By Jensen’s in-
equality for conditional expectations [5], L(P, δ̃) ≤ E(L(P, δ)|σ(X)) almost everywhere P ,
from which R(P, δ̃) ≤ R(P, δ) follows. �

A version of the Rao–Blackwell theorem can be extended to this setting by similar rea-
soning. Suppose that a σ -algebra G has the property that E2(δ(X)|G) = E2(δ(Y )|G) when
X ∼ P and Y ∼ Q for all P,Q ∈ P , so that the random object δ̃ = E2(δ(X)|G) does not
depend on P ∈P . Further suppose that a version of E2(δ|G)(ω) can be realized as a function
of X(ω), so that δ̃(X(ω)) := E2(δ(X)|G)(ω) is an estimator. This second assumption holds
in the typical scenario where X is separable and G = σ(f (X)) for some measurable function
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f of X [23]. Under a convex and lower semicontinuous loss, the risk of E(δ|G) is less than
or equal to the risk of δ for every P ∈ P . It should be noted that the standard definition of
sufficiency of G, requiring that P(A|G) = Q(A|G) for all P,Q ∈ P , A ∈ B, does not immedi-
ately imply that δ̃ = E2(δ|G) is independent of the choice of P . The reason is that in the case
of a Euclidean valued δ(X), conditional expectations can be approximated by conditional
probabilities using the dominated convergence theorem for conditional expectations. The re-
lationship between conditional expectations and conditional probabilities is more complex in
the variational formulation of the metric conditional expectation in (8).

From the Rao–Blackwell theorem, the Lehmann–Scheffé theorem is easily obtained in a
Euclidean setting by taking the conditional expectation of an unbiased estimator with respect
to a complete sufficient statistic. We define a metric space point estimator δ(X) of g(P ) ∈ X
to be unbiased for the family P if E2(δ(X)) = g(P ) when X ∼ P for all P ∈ P . The main
obstacle toward extending Lehmann–Scheffé to a metric space case is that the tower rule does
not hold in general for conditional Fréchet means: If G ⊂ H, then it will not always be the
case that E2(E2(δ|H)|G) = E2(δ|G) [66]. The reason for this is that L2(G) and L2(H) do not
inherit any Hilbert space structure from X as they do in the Euclidean case. The Pythagorean
theorem applied to nested vector subspaces cannot in general be applied to L2(H) ⊂ L2(G).
It follows that even if δ is unbiased for g(P ), there is no guarantee that E2(δ|G) will remain
unbiased for g(P ). See the Supplementary Material [53] for an explicit example of this phe-
nomenon. The general idea behind this example is to place a uniform distribution P on points
x1, x2, x3 that are chosen so that [[x1, x2]1/2, x3]1/3 = E2P . If G is the σ -algebra generated
by the indicator function of {x1, x2}, then E2(E2(X|G)) = [[x1, x2]1/2, x3]1/3 and the tower
rule fails to hold.

The problem we will consider for the remainder of this work is the estimation of a
Fréchet mean, g(P ) = E2P , under squared distance loss. If multiple independent observa-
tions X1, . . . ,Xn ∼ P are available, the plug-in sample Fréchet mean estimator defined by

X̄ := argmin
x∈X

n∑
i=1

d(x,Xi)
2(9)

is typically used as an estimator of E2P . As X̄ is the Fréchet mean of the empirical distri-
bution it might be expected that X̄ is unbiased for E2P with E2X̄ = E2P . Again, this is
not true in general. For a counterexample, see the Supplementary Material [53]. Under some
mild regularity conditions, X̄ is asymptotically unbiased as X̄ converges in L2(X ) to E2P as
n → ∞ [61].

Due to the generality of Hadamard spaces, we will work with nonparametric families of
distributions that only make mild assumptions on the Fréchet means and variances of random
objects. Parametric alternatives do exist, notably the Riemannian normal distributions on a
Riemannian manifold introduced by Pennec [56]. However, the Riemannian normal distribu-
tion can be challenging to work with as its Fréchet variance is in general related in a complex,
nonlinear way to the scale parameter of the distribution and may even depend on the Fréchet
mean.

4. Shrinkage estimators in Hadamard spaces. Suppose that one wishes to estimate the
Fréchet mean of a distribution P on the Hadamard space (X , d) under the squared distance
loss. Given one observation X ∼ P , if it is suspected that θ := E2X is close to the point ψ in
X then as an alternative to estimating θ with X one can instead estimate θ with the shrinkage
estimator [X,ψ]t for some t ∈ [0,1]. Even in the absence of strong prior information about
θ , the risk of this shrinkage estimator is always smaller than the squared distance risk of the
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estimator X for an appropriate choice of t . If V2X = σ 2 > 0, applying the CAT(0) bound in
(5) to the estimator [X,ψ]t gives

E
(
d
(
θ, [X,ψ]t)2) ≤ (1 − t)σ 2 + td(θ,ψ)2 − t (1 − t)E

(
d(X,ψ)2)

.(10)

The right-hand side of (10) is a convex, quadratic function of t . It is seen that if t is small
enough, the right-hand side of (10) is less than σ 2 and for such a t , R(P, [X,ψ]t ) < R(P,X).
Thus, there always exists an oracle estimator [X,ψ]t that is strictly closer to θ in L2(X ) than
X is.

In high-dimensional Euclidean spaces, the triangle 	θXψ is approximately a right tri-
angle with hypotenuse [X,ψ] [7, 64]. The James–Stein estimator can be viewed as an es-
timate of the projection of θ onto the line segment [X,ψ]. The same intuition holds in a
Hadamard space where we seek an estimator on the segment [X,ψ] that is close to θ . More-
over, as shown in Figure 1, the sides of comparison triangles in Hadamard spaces with neg-
ative curvature bend inward. Due to this curvature, the points [X,ψ]t will be even closer
to θ than the corresponding points in a Euclidean space would be. Another consequence
of metric convexity that motivates the use of shrinkage estimators in Hadamard spaces is
the bias-variance decomposition in (7). As long as the distribution of X is nondegenerate,
E(d(X,ψ)2) > d(E2X,ψ)2 so that d(X,ψ)2 on average overestimates the squared distance
of ψ from E2X. To correct this, the estimator [X,ψ]t is closer to ψ than X is.

For a given ψ , the central question is how should one go about choosing t in [X,ψ]t . The
optimal value of t that minimizes the upper bound of the risk in (10) is

t̃ := σ 2 + ρ(X,ψ)2 − d(θ,ψ)2

2ρ(X,ψ)2 ,(11)

where we use the notation ρ(X,ψ)2 = E(d(X,ψ)2) with ρ being the metric on the
Hadamard space L2(X ) defined in Section 2.2. We call t̃ the oracle shrinkage weight although
it only minimizes the risk upper bound, not the risk function. The Hadamard bias-variance in-
equality (7) shows that ρ(X,ψ)2 − d(θ,ψ)2 ≥ σ 2 so that t̃ ≥ σ 2/ρ(X,ψ)2. Using a plug-in
estimate for ρ(X,ψ)2, the shrinkage weight

w(X) := 1 ∧ (
σ 2/d(X,ψ)2)

(12)

serves as an estimate of this lower bound for t̃ . In order to use this shrinkage weight, the
Fréchet variance σ 2 must be a known quantity. As long as d(X,ψ)2 is sufficiently con-
centrated around ρ(X,ψ)2 the weight w(X) will tend to underestimate t̃ . This reduces the
possibility of overshrinking X when using the estimator [X,ψ]w(X).

The following theorem compares shrinkage estimators of the form [Y, ψ̃]α(Y ) in R
p

where α(Y ) is an arbitrary weight function, to corresponding shrinkage estimators in the
p-dimensional hyperbolic space H

p and demonstrates the notion that shrinkage is especially
beneficial in negatively curved spaces. The space H

p is the “canonical” example of a neg-
atively curved space. We refer the reader to differential geometry texts such as [20, 45] for
further information on H

p , tangent spaces and the exponential map.

THEOREM 4.1. Fix a θ ∈ H
p and let expθ : Rp →H

p be the diffeomorphic exponential
map from TθH

p ∼= R
p onto H

p , where TθH
p is identified with R

p under some isometric
isomorphism. Let Y be a random variable taking values in R

p with mean θ̃ and take X :=
expθ (Y − θ̃ ) so that E2X = θ . If 0 ≤ α(Y ) ≤ 1 is an arbitrary weight function, ψ̃ ∈ R

p and
ψ := expθ (ψ̃ − θ̃ ) then

E(dHp (θ, [X,ψ]α(Y ))
2)

E(dHp (θ,X)2)
≤ E(dRp (θ̃ , [Y, ψ̃]α(Y ))

2)

E(dRp (θ̃ , Y )2)
.
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The above inequality is strict if P({0 < α(Y ) < 1} ∩ {Y /∈ θ̃ + span(ψ̃ − θ̃ )}) > 0. An anal-
ogous statement holds if Hp is replaced with any complete, connected, p-dimensional Rie-
mannian manifold with nonpositive sectional curvature.

A more general extension of this theorem that applies to tangent cones in Hadamard spaces
is provided in the Supplementary Material [52]. This theorem roughly states that the relative
improvement of a shrinkage estimator over the natural unbiased estimator is larger in hy-
perbolic spaces than it is in Euclidean spaces. As an example, suppose that X follows the
Riemannian normal distribution on H

p,p ≥ 3 with Fréchet mean θ so that X = expθ (Y ),
where Y ∼ N(0, σ 2I ) [56]. If α(Y ) = 1 ∧ σ 2(p − 2)/‖Y − ψ̃‖2 is the positive-part James–
Stein estimator weight and p ≥ 3 then Theorem 4.1 implies that E(dHp (θ, [X,ψ]α(Y ))

2) ≤
E(dHp (θ,X)2). Observe however that [X,ψ]α(Y ) is not an estimator, as knowledge of the
basepoint θ of the exponential map is needed to compute Y = logθ (X), which in turn is used
to find shrinkage weight α(Y ).

4.1. Geodesic James–Stein estimator. Shrinkage estimators are typically used in a set-
ting where observations from different groups are available and information is shared be-
tween groups to improve the estimation of group-specific parameters. A multigroup Fréchet
mean estimation problem is formulated by first supposing that we have random objects
X = (X1, . . . ,Xn) where each Xi lies in the Hadamard space (Xi , di), has Fréchet mean
θi , a known Fréchet variance σ 2

i , and is independent of the other Xj ’s. The decision problem
we consider for the remainder of this article is the simultaneous estimation of the collection
of Fréchet means θ = (θ1, . . . , θn) under the loss function

L
(
θ, δ(X)

) =
n∑

i=1

di

(
θi, δi(X)

)2
/n.

This problem formulation is the same as the classical James–Stein estimation problem in the
special case when Xi = R for each i and Xi ∼ N(θi, σ

2) independently for i = 1, . . . , n.
Notice that like the classical James–Stein problem, there is no relationship assumed between
the various θi’s and the Xi’s are independent and may not even take values in the same
Hadamard space.

The simultaneous point estimation problem can be viewed as estimating a single point in
a larger Hadamard space.

DEFINITION 4.2. The product Hadamard space of the Hadamard spaces {(Xi , di)}ni=1 is
the set X (n) := X1 × · · · ×Xn with the metric d given by

d(x, y) :=
(

n∑
i=1

di(xi, yi)
2/n

)1/2

,

where x = (x1, . . . , xn) and y = (y1, . . . , yn).

The multiplicative factor n−1/2 is included in the product metric to ease notation.
Geodesics in (X (n), d) are given pointwise by [x, y]t = ([x1, y1]t , . . . , [xn, yn]t ), and the
CAT(0) inequality follows from the form of d(x, y) so that X (n) is also a Hadamard space.
The collection of observations X = (X1, . . . ,Xn) is a random object in X (n) with Fréchet
mean θ = (θ1, . . . , θn) and (total) Fréchet variance σ 2 := V2X = ∑

i V2Xi/n = ∑
i σ

2
i /n.

The simultaneous point estimation problem is to estimate E2X = θ under the loss function
L(θ, δ(X)) = d(θ, δ(X))2, which is exactly the Fréchet mean estimation problem introduced
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in Section 3. There is an added nuance to this problem as the independence assumption on
the Xi’s implies that X must follow a product distribution on X (n).

By viewing X as an element of the product Hadamard space X (n), we can form the shrink-
age estimator [X,ψ]w(X) with shrinkage weight (12) introduced at the beginning of this sec-
tion.

DEFINITION 4.3. The geodesic James–Stein estimator δJS(X) := [X,ψ]w(X) with
shrinkage point ψ = (ψ1, . . . ,ψn) is the X (n) valued estimator with components given by

δJS(X)j := [Xj,ψj ]w(X), w(X) =
(

1 ∧
∑n

i=1 σ 2
i∑n

i=1 di(Xi,ψi)2

)
.(13)

In Euclidean space, each Xi = R and the positive-part James–Stein estimator δ+(X) for
X ∼ Nn(θ, σ 2I ) is closely related to δJS(X) since δ+(X) = [X,ψ]1∧ n−2

n
σ 2/d(X,ψ)2 . The only

difference between δ+(X) and δJS(X) is the factor (n − 2)/n appearing in the shrinkage
weight of δ+(X). This factor is a remnant of tailoring δ+(X) to a Gaussian X. If Xi = R

p

for all i, then δJS will shrink every component of the vector Xi toward the vector ψi by the
same proportion w(X). Consequently, δJS does not directly focus on the features associated
the possibly exotic and high-dimensional object Xi ∈ Xi . Instead, it focuses on the overall
metric properties of each Xi .

Applications of the geodesic James–Stein estimator most commonly arise when one ob-
serves metric space random objects lying within the same metric space from different popu-
lations. This setting can be thought of as a metric space counterpart to the normal hierarchi-
cal model, but without any normality assumptions. If it is suspected that these populations
are similar but not the same, the estimator δJS can be employed as a means of sharing in-
formation across populations. More precisely, if population j consists of the observations
{X1j , . . . ,Xnj j } then the Xj appearing in (13) will represent the sample Fréchet mean of
these observations. A natural choice of ψj in this setting is to set it equal to the Fréchet
mean of the Xj ’s. If σ 2

i is unknown the sample Fréchet variance can be used as an estimator.
Alternatively, as we discuss in the next section, it suffices to find a lower bound for these
Fréchet variances. After making these substitutions, the resulting James–Stein estimator is an
analogue to the conditional expectation estimator of means in a normal hierarchical model.
There are some challenging technical considerations involved in evaluating the performance
of this estimator: sample Fréchet means are not unbiased and the statistical behavior of the
sample Fréchet variance is complex. In the sections to follow, we focus on the existence of
an asymptotic Stein effect for δJS . Broadly, our results demonstrate that distributions of the
Xj ’s need not even be related for δJS to have a smaller risk than the unbiased estimator
(X1, . . . ,Xn).

4.2. James–Stein risk comparison. The Gaussian James–Stein estimator dominates X in
squared error loss as long as the Gaussian distribution takes values in R

n with n ≥ 3 [39, 64].
Similarly, we will be primarily interested in the behavior of R(P, δJS) as the dimension n of
the Hadamard space X (n) increases. In typical applications, each Xi takes values in the same
Hadamard space X , so that Xi = X for all i and X (n) = X n. To emphasize the dimension n

of the Hadamard space X (n) that X, θ and ψ lie in, we denote these objects by X(n), θ(n) and
ψ(n). Moreover, when examining how n effects the behavior of δJS it is helpful to assume
that we have a sequence of random objects {X(n)}∞n=1 with corresponding Fréchet means
{θ(n)}∞n=1, as well as a sequence of shrinkage points {ψ(n)}∞n=1. Note that X(k) and X(n) for
k < n may be completely unrelated and similarly for ψ(k) and ψ(n).
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An upper bound for the loss function of δJS(X(n)) can be found by plugging in the
expression for [X(n),ψ(n)]w(X(n)) into the CAT(0) bound, (5). Defining A to be the set
{X(n) : σ 2 < d(X(n),ψ(n))2}, which is equal to {X(n) : w(X(n)) < 1}, it is found that

(14)

L
(
θ(n), δJS

(
X(n))) ≤ IA

[(
1 − w

(
X(n)))d(

X(n), θ(n))2 + w
(
X(n))d(

θ(n),ψ(n))2

− w
(
X(n))(1 − w

(
X(n)))d(

X(n),ψ(n))2] + IAcd
(
θ(n),ψ(n))2

= [
IA

(
1 − w

(
X(n)))(d(

X(n), θ(n))2 − σ 2)]
+ [

IAw
(
X(n))d(

θ(n),ψ(n))2] + [
IAcd

(
θ(n),ψ(n))2]

:= (a) + (b) + (c).

Notice that the denominator of IAw(X(n)) cancels with d(X(n),ψ(n))2 so that
IAw(X(n))d(X(n),ψ(n))2 = IAσ 2, which makes (14) take a reasonably simple form.

Heuristically, as n → ∞ by the law of large numbers we expect d(X(n), θ(n))2 − σ 2 → 0
and d(X(n),ψ(n))2 − ρ(X(n),ψ(n))2 → 0. As a result, the term (a) should vanish and since
E(d(X(n),ψ(n))2) ≥ σ 2 + d(θ(n),ψ(n))2 it is expected that IA → 1 so that (c) vanishes.
Furthermore, w(X(n)) = IAσ 2/d(X(n),ψ(n))2 + IAc → σ 2/ρ(X(n),ψ(n))2, which yields the
approximate risk bound

R(P, δJS)� σ 2 d(θ(n),ψ(n))2

ρ(X(n),ψ(n))2 ≤ σ 2 d(θ(n),ψ(n))2

d(θ(n),ψ(n))2 + σ 2 < σ 2 = R
(
P,X(n)),(15)

implying that δJS has a lower risk than X(n) under squared distance loss.
Regularity conditions on d(X(n), θ(n))2 and d(X(n),ψ(n))2 are needed to ensure that these

quantities are close enough to their respective means for large n. The main challenge of
obtaining a domination result that is uniform over all choices of the shrinkage point ψ(n) is
that d(X(n),ψ(n))2 can be highly variable. The variance of d(X(n),ψ(n))2 can be bounded
below by a term involving d(θ(n),ψ(n)) and so it is large if the shrinkage point is chosen
poorly so that d(θ(n),ψ(n)) is large. Restrictions are needed that limit how fast the sequence,
{d(θ(n),ψ(n))}∞n=1, can increase. Despite this, if ψ(n) is chosen to be far away from θ(n) then
E(d(X(n),ψ(n))2) will be large which implies that almost no shrinkage will be applied and
δJS(X(n)) ≈ X(n).

The behavior of d(X(n), θ(n)) can be controlled by bounding its moments. Given a se-
quence m := {mc}∞c=1 of positive real numbers, for each n we define the family of probability
distributions

P(n)
m := {

P = P1 × · · · × Pn : V2P = σ 2,0 < E
(
di(Xi,E2Xi)

c) ≤ mc,

Xi ∼ Pi, c ∈ N, i ∈ 1, . . . , n
}
.

(16)

The family P(n)
m is the set of product distributions on X (n) that have a fixed Fréchet variance

and have marginal distributions with “central-moments” that are bounded by the sequence m.
Recall that the Fréchet variance V2P is

∑n
i=1 E(di(X

(n)
i , θ

(n)
i )2)/n, and so it is an average

of the Fréchet variances of the marginal distributions. In R
n, the family P(n)

m corresponds to
product distributions with E(|X(n)

i − EX
(n)
i |c) ≤ mc and

∑n
i=1 Var(X(n)

i )/n = σ 2.
The following theorem generalizes the classical Gaussian James–Stein domination result

to the large nonparametric family P(n)
m . A mild assumption is needed that constrains how

fast d(θ(n),ψ(n))2 can grow relative to the dimension of the Hadamard space X (n). It will be
shown that this assumption is automatically satisfied if the spaces Xi have uniformly bounded
diameters. At the end of this section, we will further prove that δJS asymptotically dominates
X(n) and has a loss function that is less than σ 2 +ε with probability tending to one, regardless
of how fast d(θ(n),ψ(n))2 grows.
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THEOREM 4.4. Let {an} be a sequence with an → ∞ and take P ∈ P(n)
m to be any

distribution on X (n) with a Fréchet mean θ(n) that satisfies d(θ(n),ψ(n))2 ≤ n/an. There
exists an n∗(m, {an}) such that if n ≥ n∗ then R(P, δJS) < R(P,X(n)).

The main limitation of Theorem 4.4 is that the distribution of X(n) ∈ P(n)
m for n ≥ n∗

must satisfy d(θ(n),ψ(n))2/n ≤ a−1
n = o(1), which is similar to a condition that appears

in Brown and Kou [72] for a heteroskedastic normal model. Although more broadly appli-
cable, this condition is most easily interpreted in terms of a sequence of random objects,
X(n) ∼ P (n) ∈ P(n)

m , n ∈ N. For each n, choose a shrinkage point ψ(n) and suppose that
d(θ(n),ψ(n))2/n ≤ a−1

n for all n. Theorem 4.4 guarantees that there exists an n∗ such that
R(P (n), δJS(X(n))) < R(P (n),X(n)) for all n ≥ n∗. In particular, if limn d(θ(n),ψ(n))2/n →
0 then one can take a−1

n = d(θ(n),ψ(n))2/n. Recall that d(θ(n),ψ(n))2 is an average of
squared distances,

∑n
i=1 di(θ

(n)
i ,ψ

(n)
i )2/n. Therefore, limn d(θ(n),ψ(n))2/n → 0 only re-

quires that the average squared distance of the components of θ(n) and ψ(n) increases at a
rate that is slower than linear. Theorem 4.4 also shows that n∗ does not depend on the partic-
ular sequence of X(n) chosen, rather it only depends on {a−1

n } and m.
Instead of starting with a sequence of random objects one can start with a sequence of

shrinkage points, ψ(n). A dual way to view Theorem 4.4 is that given a sequence a−1
n and

m, δJS dominates X(n) over the subfamily, {P ∈ P(n)
m : d(E2P,ψ(n))2 ≤ na−1

n } of P(n)
m for

n ≥ n∗(m, {an}). A special case occurs when the metric spaces Xi have uniformly bounded
diameters, as for a large enough n this subfamily consists of all possible distributions on
X (n) with Fréchet variance σ 2. This follows by taking an = √

n and using the fact that
d(E2P,ψ(n))2 ≤ diam(X (n))2 < ∞. Moreover, the central moments E(di(X

(n)
i , θ

(n)
i )c) on

a space with uniformly bounded diameter cannot be larger than diam(Xi )
c, which implies the

following global domination result.

COROLLARY 4.5. If the Hadamard spaces Xi , i ∈ N are all bounded with diam(Xi ) ≤ D

for all i, then there exists an n∗(D) such that R(P, δJS) < R(P,X(n)) for any distribution P

on X (n) and any shrinkage point ψ(n), when n ≥ n∗.

The estimator X(n) is thus inadmissible for estimating the Fréchet mean under a squared
distance loss when the Xi ’s have uniformly bounded diameters and n is large enough. No-
tably, the dimension n∗ in Corollary 4.5 is independent of any choices of ψ(n) or m. Intu-
ition for Corollary 4.5 comes from (10) where it is seen that there always exists an amount
of shrinkage where the shrinkage estimator has lower risk than X(n). Under the uniform
boundedness assumption on the Xi ’s, the shrinkage weight w(X(n)) concentrates around
σ 2/ρ(X(n),ψ(n))2 closely enough for domination to occur independently of the choice of
ψ(n).

Theorem 4.4 and Corollary 4.5 are remarkable since very few assumptions are made about
the distribution of X, apart from assuming that the marginal distributions of X(n) have cen-
tral moments bounded by mc. On Euclidean spaces, the Stein estimator has been consid-
ered for a variety of classes of nonnormal distributions [8, 15]. One popular assumption is
to take the distributional family to be spherically or elliptically symmetric [12, 13, 28, 43].
At a high level, these assumptions allow generalizations of Stein’s lemma to be applied.
When the metric is given by an inner product, Stein’s lemma is used to control the term
2〈X(n) − θ(n), δ(X(n)) − X(n)〉 that appears after expanding R(P, δ) = ‖δ − θ(n)‖2. In a gen-
eral Hadamard space, there is no such decomposition of d(δ, θ(n))2. The assumption that the
distribution of X(n) is spherically symmetric in R

n can be somewhat restrictive since this
implies for example that the marginal distribution of each component Xi is the same.
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An example of a subfamily of distributions on R
n that is contained in P(n)

m is the following
location family [46]: Let F

(n)
i , i = 1, . . . , n be distributions on R with mean 0, variance σ 2

and central moments bounded by the sequence {mc}∞c=1. The set of all distributions of random

variables of the form X(n) = θ(n) + ε(n) for any θ(n) ∈ R
n and ε

(n)
i ∼ F

(n)
i is contained in

P(n)
m , because the location shifts ε

(n)
i → θ

(n)
i + ε

(n)
i do not alter any of the central moments.

This location family can be restricted further by assuming that for each n, θ(n) is known
to lie is some set �(n) with diam(�(n)) ≤ D. Theorem 4.4 implies that if ψ(n) ∈ �(n) for
all n, then there exists a dimension n∗(D,m) for which domination of X(n) occurs. Various
results similar to this are known for distributions on R

n with restricted parameter spaces
[51]. Immediate generalizations of this location family exist on arbitrary Hadamard spaces
by letting the isometry group, instead of the translation group, act on a sequence of fixed
distributions with bounded central moments.

Theorem 4.4 provides a domination result that applies to a subfamily of P(n)
m for a finite

number of groups. The geodesic James–Stein estimator also dominates X asymptotically over
all of P

(n)
m as n → ∞.

THEOREM 4.6. Let X(n) ∼ P (n) ∈ P(n)
m for all n ∈ N. If d(θ(n),ψ(n))2 → ∞ for a

sequence of shrinkage points {ψ(n)}∞n=1, then lim supn R(P (n), δJS(X(n))) = σ 2. It follows
from Theorem 4.4 that lim supn R(P (n), δJS(X(n))) ≤ limn R(P (n),X(n)) for any sequence of
ψ(n)’s. Additionally, for all ε > 0, limn P (n)(L(θ(n), δJS(X(n))) > σ 2 + ε) = 0.

Theorem 4.6 makes explicit the observation that δJS behaves similar to X(n) when the
shrinkage point is chosen to be far away from E2X

(n). Consequently, in a simultaneous
Fréchet mean estimation problem with a large number of groups the geodesic James–Stein
estimator has performance that is comparable to, or much better than, the estimator X(n).

The results in this section also apply to estimators of the form [X(n),ψ(n)]αw(X(n)) where
α ∈ (0,1]. Such estimators apply an amount of shrinkage that is proportional to, but less than
δJS . It follows that[

X(n),ψ(n)]
αw(X(n)) = [

X(n),
[
X(n),ψ(n)]

w(X(n))

]
α = [

X(n), δJS

]
α,

from which the convexity of the squared distance function implies that

d
(
θ(n),

[
X(n),ψ(n)]

αw(X(n))

)2 ≤ (1 − α)d
(
θ(n),X(n))2 + αd

(
θ(n), δJS

)2
.(17)

The risk of [X(n),ψ(n)]αw(X(n)) is therefore no larger than a convex combination of the
risk of X(n) and the risk of δJS . Estimators of this form are useful when the value of σ 2

that appears in w(X(n)) is not known but instead it is known that σ 2 is bounded below by
α0 > 0, so that α0/σ

2 ≤ 1. By taking α = α0/σ
2, the shrinkage weight αw(X(n)) is equal to

α0/d(X(n),ψ(n))2 when the event {X(n) : σ 2/d(X(n),ψ(n))2 ≤ 1} occurs. Consequently, the
estimator [X(n),ψ(n)]w̃ where w̃ = 1 ∧ α0/d(X(n),ψ(n))2 will have the same large sample
risk properties as δJS .

5. Analysis of the Bayes risk of δJS . Efron and Morris [25] show that the James–
Stein estimator may be interpreted as an empirical Bayes procedure as follows: If X(n) ∼
Nn(θ

(n), σ 2I ) and the prior distribution for θ(n) is θ(n) ∼ Nn(μ
(n), τ 2I ), then the poste-

rior mean estimator of θ(n) is the linear shrinkage estimator (1 − t)X(n) + tμ(n), with t =
σ 2/(σ 2 + τ 2). If an appropriate choice of τ 2 is not available, Efron and Morris suggest em-
pirically estimating its value from the data. Specifically, they show that (n−2)/

∑n
i=1(X

(n)
i −

μ
(n)
i )2 is an unbiased estimator of 1/(σ 2 + τ 2) with respect to the marginal distribution of X.
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Plugging this into the expression for t yields the James–Stein estimator δJS . Whereas Stein’s
results on risk concerned frequentist risk, that is, risk as a function of θ(n), Efron and Morris
obtained results on the Bayes risk, the average frequentist risk with respect to the prior distri-
bution θ(n) ∼ Nn(μ

(n), τ 2I ). They showed that not only is δJS better than X(n) with respect
to Bayes risk, δJS is almost as good as the posterior mean estimator, which is Bayes-risk
optimal. For any value of τ 2, the Bayes risk of δJS approaches that of the optimal posterior
mean estimator as n → ∞.

In this section, we consider similar results for the geodesic James–Stein estimator. We first
examine the Bayes risk of the geodesic James–Stein estimator in the case that the shrinkage
point is fixed at ψ(n). In this case, the Bayes risk is bounded above in terms of the distance
between the shrinkage point ψ(n) and the prior Fréchet mean of θ(n). If the dimension n is
sufficiently large, δJS will have a smaller Bayes risk than X(n). However, there is no guarantee
that the risk of δJS will asymptotically approach the minimum Bayes risk as n → ∞. The
absence of such a result is not surprising, since in general the Bayes estimator may not be
a geodesic shrinkage estimator of the form [X(n),ψ(n)]t . For example, even for Euclidean
sample spaces, Bayes estimators will not generally be linear shrinkage estimators unless the
model is an exponential family and the prior distribution is conjugate [19].

Next, we compare the Bayes risk of X(n) to that of a potentially more useful shrinkage es-
timator, one for which the shrinkage point is empirically estimated from the data X(n). This is
done in a setting that generalizes the simple hierarchical normal model X(n) ∼ Nn(θ

(n), σ 2I )

and θ(n) ∼ Nn(μ̃1, τ 2I ), where μ̃ ∈ R and 1 is an n-vector of all ones. Empirical Bayes es-
timation of both μ̃ and τ 2 is possible since they are common to all elements of θ(n) and,
therefore, common to all elements of X(n). We consider an analogous scenario in which the
prior Fréchet mean of each element of θ(n) is equal to a common value μ̃. Under this assump-
tion, μ̃ can approximately be estimated by the sample Fréchet mean X̄(n) of X

(n)
1 , . . . ,X

(n)
n .

The resulting estimator δJS has a smaller Bayes risk than X(n), where unlike in the frequen-
tist case, this result is global and does not only apply to a subfamily of P(n)

m . Recall that the
primary difficulty in obtaining a global domination result of δJS over X(n) in the frequen-
tist case was that the shrinkage point may be far away from θ(n). By adaptively choosing
the shrinkage point in the Bayesian setting, there is no longer this concern as X̄(n) will be
reasonably close to θ(n) with high probability.

5.1. Bayes risk of δJS . Throughout this section, we work with a prior distribution Q(n) =
Q

(n)
1 ×· · ·×Q

(n)
n for the estimand θ(n) = (θ

(n)
1 , . . . , θ

(n)
n ), so that the components θ

(n)
i of θ(n)

are mutually independent under this prior distribution. Let μ(n) ∈ X (n) be the Fréchet mean of
Q(n) and take τ 2 to be the Fréchet variance of Q(n). Conditional on θ(n) the distribution P

(n)

i,θ
(n)
i

of X
(n)
i is assumed to have Fréchet mean θ

(n)
i and Fréchet variance σ 2

i . Furthermore, we

assume conditional independence of the X
(n)
i given θ(n) so that this conditional distribution

is denoted by P
(n)

θ(n) = P
(n)

1,θ
(n)
1

× · · · × P
(n)

n,θ
(n)
n

. Lastly, we assume some additional moment

conditions so that Q(n) ∈ P(n)
l , with P(n)

l defined as in (16), for some sequence l = {lc}∞c=1

and P
(n)
θ ∈ P(n)

m for every θ ∈ X (n) for some sequence m = {mc}∞c=1. In summary, the joint
distribution of X and θ has the form

θ(n) ∼ Q(n) = Q
(n)
1 × · · · × Q(n)

n ∈ P(n)
l ,

E2Q
(n) = μ(n), V2Q

(n) = τ 2,

X(n)|θ(n) ∼ P
(n)

θ(n) = P
(n)

1,θ
(n)
1

× · · · × P
(n)

n,θ
(n)
n

∈ P(n)
m ,

E2P
(n)

θ(n) = θ(n), V2P
(n)
θ = σ 2.

(18)



3662 A. MCCORMACK AND P. HOFF

The results of this section remain nonparametric as they apply to any choice Q(n) and P
(n)

θ(n)

that satisfy (18). Notice that the model formulation in (18) still does not explicitly posit any
relationship between the distributions of the various (X

(n)
i , θ

(n)
i )’s. As an example, the stan-

dard Gaussian hierarchical model is encompassed by (18) by taking P
(n)

θ(n) = Nn(θ
(n), σ 2I )

and Q(n) = Nn(μ
(n), τ 2I ).

As in Section 4, the estimation problem of interest is to estimate θ(n) under squared dis-
tance loss where the only known quantities in (18) are X(n) and σ 2. Theorem 4.4 extends
to this setting where a prior distribution is placed on θ(n) by evaluating the performance of
δJS(X(n)) in terms of its Bayes risk.

THEOREM 5.1. Under the distributional assumptions in (18), suppose that there is a
sequence an → ∞ such that d(μ(n),ψ(n))2 ≤ n/an. There exists an n∗(m, l, {an}) such that
if n ≥ n∗ then the Bayes risk satisfies E(R(P

(n)

θ(n) , δJS)) < E(R(P
(n)

θ(n) ,X
(n))).

The bound on the distance d(θ(n),ψ(n))2 that appears in Theorem 4.4 is replaced by a
bound on d(μ(n),ψ(n))2 in Theorem 5.1. A special submodel of (18) where the condition
d(μ(n),ψ(n))2/n = o(1) is easily satisfied is where Xi = X for all i and Q(n) has the form
Q(n) = Q̃ × · · · × Q̃ for all n. Throughout this section, tildes will be used to denote points,
metrics and distributions on X when X (n) = X n is a Cartesian product of X . If ψ(n) =
(ψ̃, . . . , ψ̃) is chosen to have identical componentwise entries for all n, then d(μ(n),ψ(n))2 =
d̃(μ̃, ψ̃)2 is constant over n and so it is o(n). Using such a sequence of ψ(n)’s, Theorem 5.1
guarantees the existence of an n∗ for which δJS has a smaller Bayes risk than X(n) for n ≥ n∗.
The dimension that is needed for this smaller Bayes risk is still shrinkage point dependent
since it is contingent on the value of d̃(μ̃, ψ̃)2. In this case, we can write n∗(m, l, {an}) as
n∗(m, l, d̃(μ̃, ψ̃)).

Theorem 5.1 applies to the location family example introduced in the previous section
where X(n) = θ(n) + ε(n). The only modification needed is that θ(n) is now assumed to have
the distribution θ

(n)
i ∼ Q̃ ∈ P(1)

l independently for i = 1, . . . , n. Even in this specific ex-
ample, the class of distributions on θ(n) and ε(n) to which these results hold is very broad.
Suppose that the shrinkage point is taken to have equal componentwise entries, ψ̃ . The same
dimension n∗(m, l, d̃(μ̃, ψ̃)) works for any mean zero error distribution of ε(n) that is in P(n)

m

with V2ε
(n) = σ 2. Likewise, n∗(m, l, d̃(μ̃, ψ̃)) applies to any distribution Q̃ ∈ P(1)

l as long
as d̃(E2Q̃, ψ̃) ≤ d̃(μ̃, ψ̃).

Theorem 4.6 can similarly be extended to a Bayesian setting.

THEOREM 5.2. Let X(n) ∼ P
(n)

θ(n) , n ∈ N and E2X
(n) = θ(n) ∼ Q(n), n ∈ N satisfy the

distributional assumptions in (18). If d(μ(n),ψ(n))2 → ∞ for a sequence of shrinkage points
{ψ(n)}∞n=1, then lim supn E(R(P

(n)

θ(n) , δJS)) = limn E(R(P
(n)

θ(n) ,X
(n))). By Theorem 5.1, for any

sequence of ψ(n)’s, lim supn E(R(P
(n)

θ(n) , δJS)) ≤ limn E(R(P
(n)

θ(n) ,X
(n))), with strict inequal-

ity if d(μ(n),ψ(n))2/n = o(1). Additionally, we have that for all ε > 0, limn P (L(θ(n), δJS) >

σ 2 + ε) = 0.

It should be noted that the distributional assumptions in (18) do not constitute a fully
Bayesian model since P

(n)

θ(n) and the prior distribution Q(n), although constrained, are both

left unspecified. By leaving P
(n)

θ(n) and Q(n) unspecified the results above can be regarded as

part of a robust Bayesian analysis that compares the Bayes risk of δJS to X(n) over a wide
class of joint distributions for (X(n), θ(n)) [9]. A fully Bayesian model can be obtained from
(18) if hyperpriors are placed on both P

(n)

θ(n) and Q(n).
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5.2. Bayes risk for an adaptively chosen shrinkage point. In scenarios where the dis-
tributions of (X

(n)
i , θ

(n)
i ), i = 1, . . . , n are exchangeable, it is reasonable to require that an

estimator of θ(n) be equivariant under permutations of indices. This symmetry considera-
tion suggests that the shrinkage point ψ(n) used in δJS should have identical componentwise
entries.

It is intuitively clear that a good choice of ψ(n) should be close to θ(n) on average. In the
proof of Theorem 5.2, it is shown that limn E[(a) + (c)] = 0, for the terms (a), (c) in (14).
We make the further assumption that for all n ∈ N,

Q(n) = Q̃ × · · · × Q̃ and P
(n)

θ(n) = P̃
θ

(n)
1

× · · · × P̃
θ

(n)
n

.

Therefore, the joint distribution of (X
(n)
i , θ

(n)
i ) is the same for each group. By the definition

of Q(n), μ(n) = (μ̃, . . . , μ̃), and if ψ(n) = (ψ̃, . . . , ψ̃) has identical componentwise entries,
this implies

(19)

lim sup
n→∞

E
(
R

(
P

(n)

θ(n) , δJS

)) ≤ lim sup
n→∞

E

[
IA

d(θ(n),ψ(n))2

d(X(n),ψ(n))2

]
σ 2 = E(d(θ(n),ψ(n))2)

E(d(X(n),ψ(n))2)
σ 2

≤ E(d(θ(n),ψ(n))2)

σ 2 + E(d(θ(n),ψ(n))2)
σ 2.

The second equality in (19) holds since the integrand is uniformly integrable because it is in
L1+ε(R) for some ε > 0 since IA/d(X(n),ψ(n))2 ≤ 1/σ 2. The strong law of large numbers
shows that d(θ(n),ψ(n))2 a.s→ E(d(θ(n),ψ(n))2) and d(X(n),ψ(n))2 a.s→ E(d(X(n),ψ(n))2)

from which the second equality follows. The last inequality is a result of the Hadamard bias
variance inequality (7) applied to E(d(X(n),ψ(n))2|θ(n)). The upper bound of (19) is mini-
mized over ψ̃ when ψ̃ = argminψ̃∈X E(d(θ(n),ψ(n))2) = argminψ̃∈X E(d̃(θ

(n)
1 , ψ̃)2). By the

definition of E2θ
(n)
1 , ψ̃ = E2θ

(n)
1 = μ̃ is the minimizer of the asymptotic risk upper bound in

(19). At this optimal value of ψ(n), the asymptotic Bayes risk of δJS is at most τ 2/(σ 2 + τ 2)

percent of the risk of X(n). If either of the inequalities in (19) are strict, δJS may offer an even
greater improvement over X(n).

The preceding discussion confirms the intuition that ψ̃ should be chosen so that it is close
to μ̃. From the observations X(n) = (X

(n)
1 , . . . ,X

(n)
n ), an estimate of μ̃ can be obtained by

calculating the sample Fréchet mean (9) of X(n). In Euclidean space, the sample Fréchet
mean is simply the sample mean. Under regularity conditions, the sample Fréchet mean of
an independent and identically distributed sample {X(n)

i }ni=1, converges in L2(X ) to E2X
(n)
1

as n → ∞. Consequently, we propose using the data dependent shrinkage point, ψ̃ = �X(n),
where �X(n) is the sample Fréchet mean of X

(n)
1 , . . . ,X

(n)
n . It may not, however, be the case

that E2X
(n)
1 is the asymptotically optimal point μ̃. The point μ̃ is defined by μ̃ = E2θ

(n)
1 =

E2(E2(X
(n)
1 |θ(n)

1 )), which is not guaranteed to equal E2X
(n)
1 as the tower rule does not always

hold in a general Hadamard space (see the Supplementary Material [53]).
It was shown in Theorem 5.1 that the dimension needed for δJS to outperform X, n∗,

is a function of m, l and d̃(μ̃, ψ̃). If �X(n) is sufficiently close to E2X
(n)
1 , then the n∗

needed when using this adaptive shrinkage point will approximately be a function of m, l

and d̃(μ̃,E2X
(n)
1 ). The bias-variance inequality shows that d̃(μ̃,E2X

(n)
1 )2 ≤ E(d̃(X

(n)
1 , μ̃)2),

while the triangle inequality d̃(X
(n)
1 , μ̃) ≤ d̃(X

(n)
1 , θ

(n)
1 )+ d̃(θ

(n)
1 , μ̃) can be used to show that

d̃(μ̃,E2X
(n)
1 ) can be bounded above entirely in terms of m and l. The next theorem makes

this reasoning precise and proves the existence of an n∗(m, l) for which the James–Stein
estimator with an adaptive shrinkage point has a smaller Bayes risk than X.
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THEOREM 5.3. Assume that X(n) ∼ P
(n)

θ(n) = P̃
θ

(n)
1

× · · · × P̃
θ

(n)
n

and θ(n) ∼ Q(n) = Q̃ ×
· · · × Q̃ for all n ∈ N. If E(d̃(�X(n),E2X

(n)
1 )2) = O(n−1) with the multiplicative constant in

O(n−1) only depending on m and l, then there exists an n∗(m, l) such that for n ≥ n∗ then
E(R(P

(n)

θ(n) , δJS)) < E(R(P
(n)

θ(n) ,X
(n))), where δJS is the adaptive shrinkage estimator given

by (13) with ψ
(n)
i = �X(n). Furthermore, the same n∗ is valid for any distributions P̃

(n)
θi

∈P(1)
m

and Q̃(n) ∈ P(1)
l .

This result demonstrates that by choosing the shrinkage point adaptively there is no longer
any concern that d(μ(n),ψ(n))2 grows at too fast a rate. The shrinkage point �X(n) is on av-
erage close enough to μ̃ so that it is beneficial to shrink X(n) toward �X(n). Fixing the condi-
tional distribution P

(n)

θ(n) , Theorem 5.3 shows that δJS has a strictly smaller P(n)
l -Bayes risk

sup
Q(n)∈P(n)

l

E(R(P
(n)

θ(n) , δJS)) than X(n) for n ≥ n∗ [9].

The condition E(d̃(�X(n),E2X
(n)
1 )2) = O(n−1) in Theorem 5.3 is not overly restrictive. For

example, if X is a Hilbert space then E(d̃(�X(n),E2X
(n)
1 )2) = (σ 2 + τ 2)/n. More generally,

it is shown in [61] that if X satisfies the entropy condition
√

log(N(Bα(μ), r)) ≤ c(α/r)s for
any α, r > 0 and fixed numbers c, s ∈ R

+ with s < 1 then the desired condition holds with a
multiplicative constant that only depends on m and l. The number N(Bα(μ), r) is defined as
the covering number of the ball of radius α centered at μ by balls of radius r . Many spaces
of interest, such as the metric tree space with vertex degrees that are bounded above and
edge lengths that are bounded below, will satisfy this covering number condition. In fact, it is
not fully necessary that E(d̃(�X(n),E2X

(n)
1 )2) be O(n−1) for the conclusion of Theorem 5.3

hold; all that is needed is E(d̃(�X(n),E2X
(n)
1 )2) = o(1). However, in such a case the n∗(m, l)

needed will also depend on the rate of convergence of E(d̃(�X(n),E2X
(n)
1 )2) to zero.

5.3. Asymptotic optimality of δJS . As mentioned, it is too much to expect that δJS

asymptotically attain the optimal Bayes risk for a given sampling model, as a Bayes esti-
mator may not take the form of a shrinkage estimator. The asymptotic Bayes risk of δJS can
instead be compared against the risk of the best possible shrinkage estimator. We define the
minimum shrinkage Bayes risk of the model in 5.2 as

inf
ψ̃∈X ,t∈[0,1]

E
(
d
([

X(n),ψ(n)]
t , θ

(n))2)
.

The same derivation used in (11) shows that for a given ψ = (ψ̃, . . . , ψ̃) the shrinkage weight
that minimizes the CAT(0) upper bound is

t̃ = σ 2 + ρ(X(n),ψ(n))2 − ρ(θ(n),ψ(n))2

2ρ(X(n),ψ(n))2 .(20)

As the James–Stein shrinkage weight w(X) converges to σ 2/ρ(X(n),ψ(n))2 almost surely,
δJS only minimizes the CAT(0) bound asymptotically if ρ(X(n),ψ(n))2 − ρ(θ(n),ψ(n))2 =
σ 2. If X has negative curvature, it is typical that ρ(X(n),ψ(n))2 −ρ(θ(n),ψ(n))2 > σ 2 so that
δJS asymptotically performs less shrinkage than is needed to minimize the CAT(0) bound.

Determining the minimizer of the CAT(0) bound with respect to ψ is more complex. If
the above value of t̃ is substituted into the CAT(0) bound, then the resulting expression is

t̃σ 2 + (1 − t̃ )ρ
(
θ(n),ψ(n))2 − t̃ (1 − t̃ )ρ

(
X(n),ψ(n))2

= ρ
(
θ(n),ψ(n))2 − (ρ(θ(n),ψ(n))2 + ρ(X(n),ψ(n))2 − σ 2)2

4ρ(X(n),ψ(n))2 .
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The above expression can also be simplified in the special case when ρ(X(n),ψ(n))2 =
ρ(θ(n),ψ(n))2 + σ 2, where it equals σ 2ρ(θ(n),ψ(n))2/(σ 2 + ρ(θ(n),ψ(n))2). In this case,
it is seen that the optimal choice of ψ(n) is E2θ

(n) as this minimizes ρ(θ(n),ψ(n))2. The con-
dition ρ(X(n),ψ(n))2 = ρ(θ(n),ψ(n))2 + σ 2 is satisfied in any Hilbert space, as this is just
the bias-variance decomposition. Furthermore, the CAT(0) bound holds with equality in a
Hilbert space so the shrinkage estimator minimizing the Bayes risk is the familiar estimator,
[X(n),E2θ

(n)]σ 2/(σ 2+τ 2). The tower rule also holds in a Hilbert space so �X(n) → E2θ
(n)
1 in

L2(X ). The bound in (19) thus shows that δJS attains the minimum Bayes shrinkage risk
asymptotically in a Hilbert space. For example, in the location family example in R

n, the
Bayes risk of the adaptive James–Stein estimator approaches the minimum Bayes risk out of
all linear estimators of θ(n) as n → ∞.

Without any additional assumptions on the metric in a Hadamard space with negative
Alexandrov curvature, not much more can be said about the asymptotic optimality of δJS .
The CAT(0) upper bound may not fully reflect the behavior of the risk function in such a
space.

6. Simulations and examples. In this section, the empirical performance of the
geodesic James–Stein estimator is examined in the space of phylogenetic trees and the space
of symmetric positive definite matrices. Simulation results suggest that the n∗ appearing
Theorems 4.4 and 5.1 is not prohibitively large in practice.

6.1. Estimation of gene trees in the BHV tree space. A phylogenetic species tree de-
scribes the evolutionary history of a collection of different species. As the true evolutionary
history is not known, it has to be inferred [26]. This is often done by comparing various DNA
and amino acid sequences across the species. When comparing the nucleotide sequence of a
single gene across species, an estimate of the gene tree can be reconstructed, where a gene
tree chronicles the evolutionary history of the particular gene. Using these gene trees, one
heuristic method for estimating the species tree is to average the gene trees by taking their
Fréchet mean with respect to a chosen metric [54]. This estimator assumes that the gene trees
on average resemble the species tree. However, gene trees may differ from each other and
from the species tree due to factors such as horizontal gene transfer and incomplete lineage
sorting [50, 69]. The estimation and modeling of gene trees is currently an active area of
phylogenetics research [1, 60]. In the remainder of this section, we detail how the geodesic
James–Stein estimator can be used to construct gene tree estimates, and provide simulation
results for these estimates. Before doing this, we first discuss more precisely what a phyloge-
netic tree is and how to define a metric on the space of trees.

A (weighted and rooted) k-phylogenetic tree is a weighted graph with nonnegative edge
weights that is a tree with k leaves (degree 1 vertices). The interior vertices of this tree have
degree at least 3, except for the root vertex ρ, which possibly has degree two [62]. Each
leaf in the tree is associated with a unique label from the set {1, . . . , k}, while one of the
interior vertices of the tree is labeled as the root. A k-phylogenetic tree can be interpreted
as a species tree where the labels {1, . . . , k} represent extant species and interior vertices
represent ancestral species, with the root vertex being a common ancestor to all species.
Each interior vertex signifies a speciation event where one species diverges into two or more
different species. The edge weights between a species and its immediate ancestor in a species
tree quantifies the “amount of evolution” that has occurred between these species. If the rate
of mutation is constant over time, the edge weights can be interpreted as the amount of time
elapsed between speciation events.

The Billera–Holmes–Vogtmann (BHV) treespace Tk is a Hadamard space where each
point in Tk is a k-phylogenetic tree [11]. For pedagogical purposes, we restrict our discussion
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FIG. 2. Left to right: The tripod space on the taxa {A,B,C}. The tree T1 with (s, lI , lA, lB, lC) = (A, 3
4 ,1,

1
2 , 1

4 ), with the interior edge highlighted in blue. The tree T2 with (s, lI , lA, lB, lC) = (C, 1
4 , 3

4 , 3
4 , 1

2 ), with the
interior edge highlighted in red.

to T3, denoting the three taxa by A, B and C. However, note that everything that follows
applies to treespaces with k > 3. Any tree in T3 has four edges: three that have an endpoint
which is a leaf and one interior edge that has the root as an endpoint. Given a collection of
edge weights, the tree is determined by which of the three species diverged from the other
two first, which is referred to as the tree topology. Therefore, any tree in T3 is determined
by (s, lI , lA, lB, lC) ∈ {A,B,C} ×R

4+ where s is the species that first diverges from the root,
lI is the weight or length of the interior edge and lα, α ∈ {A,B,C} is the length of the edge
connected to species α. Representing a tree by these data, the treespace metric is given by

d
(
T ,T ∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√(
lI − l∗I

)2 + ∑
α

(
lα − l∗α

)2 if s = s∗,
√(

lI + l∗I
)2 + ∑

α

(
lα − l∗α

)2 if s = s∗.
(21)

Note that T and T ∗ represent the same tree if lI = l∗I = 0 and lα = l∗α , α ∈ {A,B,C}. Geo-
metrically, the interior edge of a tree can be represented as the tripod space that takes three
rays and glues these rays together at their endpoints (see Figure 2). A point that is a distance
of c away from the endpoint of ray α corresponds to trees with s = α and lI = c. The space
T3 is the Cartesian product of the tripod space with the nonnegative orthant R3+, where the
lengths of the noninterior edges of a tree are represented in this orthant. Higher-dimensional
tree spaces are constructed similarly, although there are many more than three types of tree
topologies when k > 3 [62].

The Jukes–Cantor model [40] is a basic model that describes the mutation of nucleotide
sequences with respect to a given k-phylogenetic tree τ . Let z ∈ {A,T ,C,G} be a base pair
at the root vertex ρ of τ and take v to be a vertex that is adjacent to the root and a distance
of � away. Under the Jukes–Cantor model the probability that the base pair at v is still z is
(1 + 3e−�)/4 while the probability that z mutates into one of the three other base pairs is
(1 − e−�)/4 for each of the other base pairs. Once a base pair is generated at v, the process is
repeated for vertices adjacent to v that have not already been assigned a base pair until a base
pair is has been placed at every vertex on τ . To generate an entire nucleotide sequence, this
process is run independently for each base pair in the starting nucleotide sequence at ρ. In
practice, one usually observes only the nucleotide sequences resulting from the Jukes–Cantor
process at each leaf of the tree. From these sequences, the tree τ , which can be viewed as a
parameter in the Jukes–Cantor model, can be estimated via maximum likelihood estimation
or the method of moments [26, 38]. This process of estimating a gene tree motivates the
distribution over trees that we consider in the simulations to follow.

Under the BHV distance, the gene tree estimation problem can be formulated as a problem
of jointly estimating Fréchet means. Let T := (T1, . . . , Tn) ∈ Tk × · · · × Tk be an observation
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of gene trees across k different species for n different genes. The goal of the gene tree es-
timation problem is to estimate the treespace Fréchet mean of (E2(T1), . . . ,E2(Tn)) of T

under the loss function L(E2(T ), δ) = ∑n
i=1 d(δi,E2(Ti))

2. As Tk is a Hadamard space, the
geodesic James–Stein estimator of E2(T ) can be used as an alternative to the estimator T .

To compare the performance of δJS(T ) to T , we compare the risk functions of these es-
timators in the treespace T3. Given n, fix a collection of trees (τ1, . . . , τn) ∈ T n

3 . For each
i = 1, . . . , n, we generate a tree Ti corresponding to τi by:

1. Running the Jukes–Cantor process on τi with respect to a nucleotide sequence of length
50.

2. Taking the observation Ti to be a method of moments estimator of τi constructed from
the above nucleotide sequences on the leaves of τi .

From the observed gene trees (T1, . . . , Tn), we obtain Monte Carlo estimates of the risk of
the estimator T and the geodesic James–Stein estimator. To efficiently explore the parameter
space of trees, we draw independent observations of τi = (si, lI,i , lA,i, lB,i, lC,i) with

si ∼ Multinomial(pA,pB,pC), Li ∼ Exp(λ), Ui ∼ Unif(0,1),

lI,i = UiLi, lsi ,i = Li, lα,i = (1 − Ui)Li, α = si
(22)

The random variable si reflects the distribution of the tree topology of τi , Li represents the
distance from every leaf to the root node and Ui represents the ratio of length of the interior
edge to the distance from the root to a leaf node. Our Monte Carlo study proceeds as follows:

1. Fix parameter values for (pA,pB,pC) and λ and generate 50 batches of trees
(τ1, . . . , τn) from the aforementioned distribution with these parameter values.

2. For each of the 50 batches, we compute Monte Carlo estimates of the risk of the sample
Fréchet mean and the geodesic James–Stein estimator.

Two different shrinkage points are used in the geodesic James–Stein estimator: the first is the
sample Fréchet mean of T1, . . . , Tn, while the second corresponds to the tree (A,4,8,4,4)

with si = A, Li = 8 and Ui = 0.5. The second shrinkage point is intentionally chosen so that
it is not close to the typical location of the Fréchet means under (22). The results of this study
are summarized in Table 1, which displays the average (Bayes) risk ratio across all batches
of the James–Stein estimator to the estimator T . The proportion of the 50 batches where the
James–Stein estimator has a smaller risk than T is also displayed in parentheses.

Table 1 demonstrates that in general, the Bayes risk of the geodesic James–Stein estimator
is less than the Bayes risk of T . At n = 50, the conclusion of Theorem 5.1 holds empirically.

TABLE 1
Risk ratios E(R(Pθ , δJS))/E(R(Pθ ,T )) where Pθ is given by (22) with θ = (pA,pB,pC,λ). In parentheses,

the proportion of batches with R(Pθ , δJS) < R(Pθ , �T )

Shrinkage point ψi = �T ψi = (A,4,8,4,4)

n 3 15 50 3 15 50
(pA,pB,pC) λ

( 1
3 , 1

3 , 1
3 ) λ = 0.5 0.70 (0.74) 0.48 (1.00) 0.45 (1.00) 0.87 (0.82) 0.88 (1.00) 0.90 (1.00)

λ = 1 0.79 (0.50) 0.61 (0.98) 0.54 (1.00) 0.92 (0.70) 0.94 (0.92) 0.95 (0.98)
λ = 2 1.00 (0.22) 0.91 (0.52) 0.71 (0.98) 0.98 (0.52) 1.00 (0.44) 0.99 (0.64)

( 1
10 , 1

10 , 8
10 ) λ = 0.5 0.67 (0.76) 0.50 (1.00) 0.44 (1.00) 0.87 (0.88) 0.89 (0.98) 0.89 (1.00)

λ = 1 0.84 (0.46) 0.61 (1.00) 0.55 (1.00) 0.94 (0.74) 0.95 (0.80) 0.96 (0.96)
λ = 2 1.05 (0.14) 0.89 (0.48) 0.69 (0.98) 0.99 (0.48) 0.99 (0.56) 0.99 (0.58)



3668 A. MCCORMACK AND P. HOFF

This difference in risks is especially significant when the sample Fréchet mean shrinkage
point is used in δJS , where the Bayes risk can be less than half of that of T . Even with poorly
chosen, second shrinkage point, δJS has smaller Bayes risks than T . As the number of gene
trees increases, the proportion of batches where δJS outperforms the sample Fréchet mean
also increases. When using the sample Fréchet mean as the shrinkage point, at n = 50 the
estimator δJS outperforms T for nearly every batch.

It is also seen from the table that the value of λ significantly influences the Bayes risk
ratios. Simulations show that the ratio of the between-group Fréchet variance to the within-
group Fréchet variance increases as λ increases. Therefore, the geodesic James–Stein estima-
tor has better relative performance for small λ values, where shrinkage is especially helpful in
reducing the variability of the tree estimates. Surprisingly, the multinomial probabilities have
little impact on the Bayes risk ratios, in part because the these probabilities do not appreciably
alter the within-to-between group Fréchet variance ratio.

One might wonder if the Euclidean orthant R3+ portion of T3 is the primary factor that
explains why the James–Stein estimator generally outperforms the sample Fréchet mean.
A separate simulation study involving a random walk on a metric tree is provided in the the
Supplementary Material [53]. The results of this study demonstrate that δJS performs espe-
cially well on this negatively curved metric tree space, which is formed by gluing multiple
tripod spaces together. This agrees with the intuition that the inward bending comparison tri-
angles in a negatively curved space enhance the performance of shrinkage relative to a space
with Euclidean comparison triangles.

A property of sample Fréchet means for an observation in the treespace Tk and more gen-
erally on stratified spaces that has garnered recent interest is that the Fréchet mean can be
“sticky” [36]. Stickiness in the tripod space roughly amounts to the tendency of the sam-
ple Fréchet means to lie exactly on the central vertex as the sample size increases. When
the population Fréchet mean is also this same vertex, stickiness implies that for large sam-
ple sizes there is a high probability that the sample Fréchet mean is equal to the population
Fréchet mean. Shrinkage is therefore only beneficial if the sample Fréchet mean does not
stick to the population Fréchet mean. Despite this property of the sample Fréchet mean in the
sticky regime, it can still be improved upon by the geodesic James–Stein estimator. That is, if
there are n populations and a random sample of fixed size m is taken from each population,
then under the conditions of Theorem 4.4, δJS outperforms the groupwise sample Fréchet
mean estimator if n is large enough. Simulations demonstrating this are provided in the Sup-
plementary Material [53]. When the sample Fréchet mean is sticky, its Fréchet variance is
small so only a mild amount of shrinkage is used in δJS . Shrinkage estimation is most potent
when sample sizes are small. For large sample sizes, δJS will behave almost identically to the
sample Fréchet mean.

6.2. Spatial smoothing of DTI imaging data. Diffusion tensor imaging (DTI) is a medical
imaging technique where the diffusion of water molecules in a tissue is measured under the
influence of an external magnetic field. Various magnetic field gradients are applied, making
it possible to estimate the prominent directions of diffusion at each tissue voxel. DTI is par-
ticularly useful for imaging the brain, as the primary directions of diffusion correlate with the
directions of white matter fiber tracts. The DTI data we examine below consist of a collection
of 3 × 3 symmetric positive definite (SPD) matrices, one at each voxel in three-dimensional
space. Each matrix is an estimate of the covariance matrix of the diffusion process at the
corresponding voxel. The eigenstructure of these SPD matrices is especially of interest. For
example, in each voxel the principle eigenvector represents the primary axial direction of
diffusion and the mean of the eigenvalues represents the overall diffusivity of the medium.
The eigenstructure however can be sensitive to noise and so spatial smoothing is often ap-
plied to the SPD matrices [70]. One approach to smoothing is to use kernel-weighted sample
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Fréchet means under either the log-Euclidean, affine-invariant or Euclidean distances within
a window around a voxel [18]. The log-Euclidean and affine-invariant distances, respectively,
are

dLE(S1, S2) = ∥∥log(S1) − log(S2)
∥∥
F ,

dAI (S1, S2) = ∥∥log
(
S

−1/2
1 S2S

−1/2
1

)∥∥
F ,

where log(·) is the matrix logarithm and ‖ · ‖F is the Frobenius norm [4, 57]. The collection
of SPD matrices is a Hadamard space under both of these distances, where the log-Euclidean
distance has vanishing Alexandrov curvature.

The basic kernel-weighted Fréchet mean estimator has the drawback that the same pattern
of weights or kernel bandwidth is used at each voxel. As an alternative, the geodesic James–
Stein estimator, which is known to have connections to smoothing in the Euclidean setting
[41, 47], can be used to adaptively smooth DTI data. Shrinkage estimators of covariance
matrices have been considered extensively in the literature where shrinking the eigenvalues
of the sample covariance matrix can result in estimators that dominate the sample covariance
matrix [35, 39, 44]. These results typically pertain to squared error loss or Stein’s loss with
a notable exception being the recent work [73] where the log-Euclidean distance is used as
a loss function. Letting Sijk be the observed SPD matrix at voxel (i, j, k), our objective is to
jointly estimate the Fréchet means E2Sijk as (i, j, k) ranges over all voxels, under the loss∑

ijk d(δijk,E2Sijk)
2. Define S̄ijk to be the sample Fréchet mean of the 27 matrices in the

3 × 3 × 3 window Bijk = {(a, b, c) : ‖(i, j, k) − (a, b, c)‖�1 ≤ 1}, centered at voxel (i, j, k).
Using S̄ijk as a shrinkage point, we define the following variant of the geodesic James–Stein
estimator:

δ̃ijk = [Sijk, S̄ijk]wijk
, wijk = 1 ∧

σ̂ 2
Bijk

1
27

∑
(a,b,c)∈Bijk

d(Sabc, S̄ijk)2
.(23)

The distance d determines the type of geodesic used in δ̃ and can be any one of dLE , dAI or
the Euclidean distance. The quantity σ̂ 2

Bijk
is an estimate of the total Fréchet variance σ 2

Bijk
:=∑

(a,b,c)∈Bijk
V2(Sabc)/27 of the tensors in Bijk . Large values of σ̂ 2

Bijk
result in the window

smoother δ̃ijk ≈ S̄ijk while small values yield δ̃ijk ≈ Sijk . The only difference between the
estimator δ̃ and δJS is that a different shrinkage point is used at each voxel.

Before applying δ̃ to real data we evaluate the performance of the geodesic James–Stein
estimator on simulated tensor field data. This is done by perturbing two different template
tensor fields Tijk with noise. The two templates chosen are shown in Figure 3 and have
the same checkerboard and circular patterns, respectively, for each (i, j) plane slice. The
patterns have the respective dimensions 12 × 12 × 5 and 7 × 7 × 5. Simulated data Sijk that
are centered around the respective templates are generated according to one of the following
log-Gaussian or Wishart distributions:

log(Sijk) ∼ N
(
log(Tijk),0.25I

)
or 8Sijk ∼ Wishart(Tijk,8).

Fifty such data sets are simulated for each noise model, and the geodesic James–Stein estima-
tors (23) under the affine-invariant and log-Euclidean distances are computed for each data
set. A total of 720 and 245 tensors are estimated in the checkerboard and circular templates,
respectively, for each data set. Monte Carlo estimates are used to compute the Fréchet vari-
ances in (23), which are assumed to be known. The average value of

∑3
l=1(log(λl)− log(λ̂l))

2

where λl is the lth eigenvalue of Tijk and λ̂l is the lth eigenvalue of various estimators of Tijk

is presented in Table 2. The average axial angle between the principle eigenvectors in the
template and the various estimates of the template is also provided.
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FIG. 3. Left to right: template, template with added noise, affine-invariant geodesic James–Stein smoothing,
log-Euclidean window smoother. Tensors are coloured by their fractional anisotropy.

The results in Table 2 demonstrate that the different geodesic James–Stein estimator vari-
ants perform well, with the estimator that uses the log-Euclidean metric generally outper-
forming the estimator that uses the affine-invariant metric. They are both significantly better
than the window smoother in the checkerboard template since the window smoother applies
too much smoothing around the boundary of each square, making the estimated tensors in
these voxels overly isotropic. In the circular template, the James–Stein and window estima-
tors are comparable as both estimators smooth the data by a significant amount. The benefit of
using the geodesic James–Stein estimator variant introduced here is that the shrinkage weight

TABLE 2
Risk of estimating eigenvalues and principle eigenvectors

Template Noise Estimator Eigenvalue risk Principle eigenvector risk

Checker Log-Gauss Noised Data 0.68 0.43
LE-JS 0.26 0.33
AI-JS 0.29 0.37
Log-Window 0.71 0.45

Checker Wishart Noised Data 1.25 0.43
LE-JS 0.55 0.33
AI-JS 0.60 0.38
Log-Window 0.92 0.46

Circle Log-Gauss Noised Data 0.79 0.47
LE-JS 0.16 0.24
AI-JS 0.21 0.30
Log-Window 0.22 0.20

Circle Wishart Noised Data 1.43 0.47
LE-JS 0.45 0.21
AI-JS 0.52 0.31
Log-Window 0.47 0.21
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used in δ̃ adapts to the amount of local variability of the Fréchet mean E2Sijk as a function
of voxel location. Along boundary regions where the tensor structure is highly variable, wijk

will be small and less shrinkage will be applied as compared to regions that are more uniform.
This explains why δ̃ shrinks by a large amount in the smoothly varying circular template and
shrinks less in the checkerboard template.

We now apply the estimator (23) to the “Sherbrooke 3-shell” data set that is publicly
available from the DIPY Python package [31]. The data are a 71 × 88 × 62 spatial grid
of 3 × 3 SPD matrices representing the estimated diffusion tensor at various locations in
the brain of a single patient. The log-Euclidean metric is used in (23), as sample Fréchet
means can be computed quickly in this metric. The remarks at the end of Section 4 suggest
that δJS(S) will outperform S if a lower bound for σ 2

Bijk
is used in the estimator (23). To

find such a lower bound, we first make the simplifying assumption that σ 2
Bijk

= σ 2 is con-
stant across (i, j, k). Due to the vanishing Alexandrov curvature of dLE , if E2Sijk ≈ E2Sabc

then E(dLE(Sijk, Sabc)
2) ≈ 2σ 2. If NN(ijk) is the index of the neighboring tensor of voxel

(i, j, k) that is closest to Sijk in dLE , then we assume that E2Sijk ≈ E2SNN(ijk) and

σ̂ 2 = 1

2|R|
∑

(a,b,c)∈R

d(Sabc, SNN(abc))
2

is taken as a conservative lower bound of σ 2 in δ̃. The region R is chosen to be a representative
portion of the brain that excludes the outer border of the image where the tensors are constant.

Figure 4 displays a two-dimensional slice of the field of principle eigenvectors for the
original data, the window smoother that computes the log-Euclidean Fréchet mean within
each 3 × 3 × 3 window and δ̃ under the log-Euclidean distance. Zero tensors where no dif-
fusion occurs are not included when calculating the window mean in the window smoother.
Moreover, we do not apply any shrinkage to voxels that contain zero tensors in the window
smoother. These additional steps are taken to ensure that the window smoother is a reason-
able estimator to which the James–Stein estimator can be compared against. The estimates

FIG. 4. Principle eigenvectors in a transverse section of the brain and the shrinkage weights used in the log-Eu-
clidean geodesic James–Stein estimator. Black represents weights that are 1 (total shrinkage) and white represents
weights that are 0 (no shrinkage).
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of both δ̃ and the window smoother depend on tensors lying in adjacent two-dimensional
slices that are not pictured here. The rightmost plot in Figure 4 illustrates how the δ̃ shrink-
age weights wijk vary over the given slice. It is seen that in regions where the tensor field
abruptly changes, such as the outer border of the brain and the center of the brain, almost
no shrinkage is applied in δ̃. Without the above modifications to how the window smoother
treats zero tensors, the window smoother will smooth data in these regions excessively, blur-
ring the boundaries apparent in the original data between regions with disparate structure. In
summary, the log-Euclidean geodesic James–Stein estimator provides compromise between
the two extremes of the not smoothing at all and utilizing a window smoother. It adaptively
chooses the amount of smoothing to be applied an each voxel, which helps to mitigate the
risk of oversmoothing in regions where the underlying mean tensor field is highly variable.

7. Discussion. In this article, we have primarily considered the risk properties of the
geodesic James–Stein estimator for multiple Fréchet means. The primary result of this work,
Theorem 4.4, shows that under mild conditions the geodesic James–Stein estimator outper-
forms X in a simultaneous Fréchet mean estimation problem if there are enough groups
present and the shrinkage point is reasonably chosen. It is the nonpositive Alexandrov curva-
ture of the metric space that forms the foundation of this result, as it implies that the squared
distance function is metrically convex.

One may wonder if the results of this article can be extended to arbitrary geodesic metric
spaces. In general the answer is no. To see this, consider the sphere S

2 ⊂ R
3 with its intrin-

sic, angular metric. The squared distance metric on the sphere is not metrically convex due
to its positive sectional, and thus Alexandrov, curvature. For example, any two points x, y

that lie on the equator of the sphere have d([x, y]t ,N) = d(x,N) = d(y,N) for all t ∈ [0,1]
where N is the north pole. As a result, no point of the geodesic [x, y] is closer to N than
x itself. A more extreme example on S

1 is presented in Supplementary Material [53] where
for a certain ψ and distribution of X, [X,ψ]t is has a larger risk than X for all t > 0. As
S

1 is compact, Corollary 4.5 fails to hold in a general metric space. Shrinkage may still be
beneficial under specific circumstances. In the case of a Riemannian manifold, if a distribu-
tion is concentrated in a small enough region of the manifold, the effect of curvature on the
metric will not be pronounced and results from the Euclidean case will approximately apply.
If reliable prior information, suggesting that E2X is close to ψ , is available then the shrink-
age estimator [X,ψ]t will likely have reasonable performance even if the metric space has
positive Alexandrov curvature.

Another extension of the geodesic James–Stein estimator presented here would be to cases
where σ 2 is unknown and a plug-in estimator is used for σ 2 in the expression for the geodesic
James–Stein estimator. The theoretical properties of such an estimator are more complex be-
cause multiple observations per group are required to obtain an estimate of σ 2. A property
like the Hadamard bias-variance inequality will no longer be applicable since the sample
Fréchet means of i.i.d. observations may not be unbiased for the underlying Fréchet mean.
Results from [33, 34] further show that there is no Stein phenomenon for a family of distri-
butions with finite support. More specifically, admissible estimators for individual decision
problems remain admissible when combined into an estimator for the joint decision problem
whose loss function is the sum of the losses for the individual problems. For example, if
Xi ∼ Bin(ni, θi) then (X1, . . . ,Xn) is admissible for estimating (θ1, . . . , θn) under squared
error loss because Xi is admissible for estimating θi . This shows that Corollary 4.5 will not
hold in general if σ 2 is unknown, since the estimator X is admissible in this binomial exam-
ple. We again remark that σ 2 does not have to be known exactly in order to use δJS . Rather,
all that is needed is a nonzero lower bound on σ 2 from which this lower bound can be used
in place of σ 2 in (13). All the theoretical results in in Sections 4 and 5 will apply to the
James–Stein estimator that uses such a lower bound, as shown by (17).
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The hierarchical model introduced in Section 4 of this article represents one of the most
basic Fréchet mean and variance structures possible on metric space valued data. Recent
work on Fréchet regression [59] and geodesic regression [27] provide examples of reason-
able Fréchet mean functions of a Euclidean covariate for metric space valued data. In these
works, the mean functions depend on more general covariates in Rk , rather than just indi-
cator functions of group membership. Another area of recent interest is modeling the joint
distributions of random objects on metric spaces. The Bayesian hierarchical model of Sec-
tion 5 provides a basic example of this, for if multiple observations were obtained within each
group, then observations within the same group are more “correlated” with each other than
observations in different groups. Various notions of covariance on metric spaces have been
proposed in [22, 49, 68]. There is substantial scope for the development of parametric and
nonparametric models that incorporate these notions of covariance and permit tractable infer-
ence. The geodesic James–Stein estimator solves the simple weighted Fréchet mean problem,
δJS,i = argminz∈X (1−w(X))d(Xi, z)

2 +w(X)d(ψ, z)2. It is anticipated that a typical infer-
ential procedure for estimating the Fréchet means of correlated metric space data will result
in solving similar weighted sample Fréchet mean problems.
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SUPPLEMENTARY MATERIAL

Supplement A: Proofs (DOI: 10.1214/22-AOS2245SUPPA; .pdf). Proofs of the results in
this article can be found in Supplement A [52].

Supplement B: Counterexamples, numerical results and algorithms (DOI: 10.1214/
22-AOS2245SUPPB; .pdf). Supplement B [53] contains counterexamples related to the tower
rule and unbiasedness of sample Fréchet means. Simulation results on a metric tree and in a
regime where the Fréchet mean is sticky are provided.
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Jurečková. Inst. Math. Stat. (IMS) Collect. 7 25–34. IMS, Beachwood, OH. MR2808363

[8] BERGER, J. (1975). Minimax estimation of location vectors for a wide class of densities. Ann. Statist. 3
1318–1328. MR0386080

[9] BERGER, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer Series in Statis-
tics. Springer, New York. MR0804611 https://doi.org/10.1007/978-1-4757-4286-2

[10] BHATTACHARYA, R. and PATRANGENARU, V. (2003). Large sample theory of intrinsic and extrinsic sample
means on manifolds. I. Ann. Statist. 31 1–29. MR1962498 https://doi.org/10.1214/aos/1046294456

https://doi.org/10.1214/22-AOS2245SUPPA
https://doi.org/10.1214/22-AOS2245SUPPB
http://www.ams.org/mathscinet-getitem?mr=0049584
http://www.ams.org/mathscinet-getitem?mr=3930625
https://doi.org/10.1007/978-3-030-05312-3
http://www.ams.org/mathscinet-getitem?mr=2288028
https://doi.org/10.1137/050637996
http://www.ams.org/mathscinet-getitem?mr=3241330
https://doi.org/10.1515/9783110361629
http://www.ams.org/mathscinet-getitem?mr=0253461
https://doi.org/10.1214/aoms/1177697104
http://www.ams.org/mathscinet-getitem?mr=2808363
http://www.ams.org/mathscinet-getitem?mr=0386080
http://www.ams.org/mathscinet-getitem?mr=0804611
https://doi.org/10.1007/978-1-4757-4286-2
http://www.ams.org/mathscinet-getitem?mr=1962498
https://doi.org/10.1214/aos/1046294456
https://doi.org/10.1214/22-AOS2245SUPPB
https://doi.org/10.1007/978-3-030-05312-3
https://doi.org/10.1515/9783110361629


3674 A. MCCORMACK AND P. HOFF

[11] BILLERA, L. J., HOLMES, S. P. and VOGTMANN, K. (2001). Geometry of the space of phylogenetic trees.
Adv. in Appl. Math. 27 733–767. MR1867931 https://doi.org/10.1006/aama.2001.0759

[12] BRANDWEIN, A. C. and STRAWDERMAN, W. E. (1991). Generalizations of James–Stein estimators under
spherical symmetry. Ann. Statist. 19 1639–1650. MR1126343 https://doi.org/10.1214/aos/1176348267

[13] BRANDWEIN, A. C. and STRAWDERMAN, W. E. (2012). Stein estimation for spherically symmetric distri-
butions: Recent developments. Statist. Sci. 27 11–23. MR2953492 https://doi.org/10.1214/10-STS323

[14] BRIDSON, M. R. and HAEFLIGER, A. (1999). Metric Spaces of Non-positive Curvature. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319. Springer,
Berlin. MR1744486 https://doi.org/10.1007/978-3-662-12494-9

[15] BROWN, L. D. (1966). On the admissibility of invariant estimators of one or more location parameters. Ann.
Math. Stat. 37 1087–1136. MR0216647 https://doi.org/10.1214/aoms/1177699259

[16] BROWN, L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value problems.
Ann. Math. Stat. 42 855–903. MR0286209 https://doi.org/10.1214/aoms/1177693318

[17] BURAGO, D., BURAGO, Y. and IVANOV, S. (2001). A Course in Metric Geometry. Graduate Studies in
Mathematics 33. Amer. Math. Soc., Providence, RI. MR1835418 https://doi.org/10.1090/gsm/033

[18] CARMICHAEL, O., CHEN, J., PAUL, D. and PENG, J. (2013). Diffusion tensor smoothing through weighted
Karcher means. Electron. J. Stat. 7 1913–1956. MR3084676 https://doi.org/10.1214/13-EJS825

[19] DIACONIS, P. and YLVISAKER, D. (1979). Conjugate priors for exponential families. Ann. Statist. 7 269–
281. MR0520238

[20] DO CARMO, M. P. (1992). Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Inc.,
Boston, MA. MR1138207 https://doi.org/10.1007/978-1-4757-2201-7

[21] DUBEY, P. and MÜLLER, H.-G. (2019). Fréchet analysis of variance for random objects. Biometrika 106
803–821. MR4031200 https://doi.org/10.1093/biomet/asz052

[22] DUBEY, P. and MÜLLER, H.-G. (2020). Functional models for time-varying random objects. J. R. Stat. Soc.
Ser. B. Stat. Methodol. 82 275–327. MR4084166

[23] DUDLEY, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74.
Cambridge Univ. Press, Cambridge. MR1932358 https://doi.org/10.1017/CBO9780511755347

[24] EFRON, B. and MORRIS, C. (1972). Empirical Bayes on vector observations: An extension of Stein’s
method. Biometrika 59 335–347. MR0334386 https://doi.org/10.1093/biomet/59.2.335

[25] EFRON, B. and MORRIS, C. (1973). Stein’s estimation rule and its competitors—An empirical Bayes ap-
proach. J. Amer. Statist. Assoc. 68 117–130. MR0388597

[26] FELSENSTEIN, J. and FELENSTEIN, J. (2004). Inferring Phylogenies 2. Sinauer Associates, Sunderland,
MA.

[27] FLETCHER, P. T. (2013). Geodesic regression and the theory of least squares on Riemannian manifolds. Int.
J. Comput. Vis. 105 171–185. MR3104017 https://doi.org/10.1007/s11263-012-0591-y

[28] FOURDRINIER, D., STRAWDERMAN, W. E. and WELLS, M. T. (2003). Robust shrinkage estimation for
elliptically symmetric distributions with unknown covariance matrix. J. Multivariate Anal. 85 24–39.
MR1978175 https://doi.org/10.1016/S0047-259X(02)00023-4

[29] FOURDRINIER, D., STRAWDERMAN, W. E. and WELLS, M. T. (2018). Shrinkage Estimation. Springer
Series in Statistics. Springer, Cham. MR3887633 https://doi.org/10.1007/978-3-030-02185-6

[30] FRÉCHET, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst.
Henri Poincaré 10 215–310. MR0027464

[31] GARYFALLIDIS, E., BRETT, M., AMIRBEKIAN, B., ROKEM, A., VAN DER WALT, S., DESCOTEAUX, M.,
NIMMO-SMITH, I. and DIPY CONTRIBUTORS (2014). DIPY, a library for the analysis of diffusion
MRI data. Front. Neuroinform. 8 8. https://doi.org/10.3389/fninf.2014.00008

[32] GINESTET, C. E. (2012). Strong consistency of Fréchet sample mean sets for graph-valued random vari-
ables. Preprint. Available at arXiv:1204.3183.

[33] GUTMANN, S. (1982). Stein’s paradox is impossible in problems with finite sample space. Ann. Statist. 10
1017–1020. MR0663454

[34] GUTMANN, S. (1984). Decisions immune to Stein’s effect. Sankhyā Ser. A 46 186–194. MR0778869
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